
Logic and Implication
An introduction to the general algebraic study of non-classical

logics

Carles Noguera

Institute of Information Theory and Automation
Czech Academy of Sciences

SLALM 2019

Carles Noguera (UTIA CAS) Logic and Implication SLALM 2019 1 / 81



Outline

1 Introduction

2 A general algebraic theory of logics

3 Weakly implicative logics

4 Substructural and semilinear logics

Carles Noguera (UTIA CAS) Logic and Implication SLALM 2019 2 / 81



Introduction
Logic is the study of correct reasoning.

There are many different forms of correct reasoning.
Hence, there are many logics.
Algebraic logic studies propositional logics by means of their
algebraic and matricial semantics.
Abstract algebraic logic (AAL) has developed a general and
abstract theory of the relation between logics and their algebraic
(matricial) semantics.
AAL describes the role of connectives in (non-)classical logics.
Protoalgebraic logics and their subclasses are based on a general
notion of equivalence.
Implication has a crucial role in reasoning (entailment,
consequence, preservation of truth,...)
The goal of this course is to present an AAL theory based on
implication, together with a wealth of examples of (non-)classical
logics.
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Basic syntactical notions – 1

Propositional language: a countable type L, i.e. a function ar : CL → N,
where CL is a countable set of symbols called connectives, giving for
each one its arity. Nullary connectives are also called truth-constants.
We write 〈c, n〉 ∈ L whenever c ∈ CL and ar(c) = n.

Formulas: Let Var be a fixed infinite countable set of symbols called
variables. The set FmL of formulas in L is the least set containing Var
and closed under connectives of L, i.e. for each 〈c, n〉 ∈ L and every
ϕ1, . . . , ϕn ∈ FmL, c(ϕ1, . . . , ϕn) is a formula.

Substitution: a mapping σ : FmL → FmL, such that
σ(c(ϕ1, . . . , ϕn)) = c(σ(ϕ1), . . . , σ(ϕn)) holds for each 〈c, n〉 ∈ L and
every ϕ1, . . . , ϕn ∈ FmL.

Consecution: a pair Γ � ϕ, where Γ ∪ {ϕ} ⊆ FmL.
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Basic syntactical notions – 2
A set L of consecutions can be seen as a relation between sets of
formulas and formulas. We write ‘Γ `L ϕ’ instead of ‘Γ � ϕ ∈ L’.

Definition
A set L of consecutions in L is called a logic in L whenever

If ϕ ∈ Γ, then Γ `L ϕ. (Reflexivity)
If ∆ `L ψ for each ψ ∈ Γ and Γ `L ϕ, then ∆ `L ϕ. (Cut)
If Γ `L ϕ, then σ[Γ] `L σ(ϕ) for each substitution σ.

(Structurality)

Observe that reflexivity and cut entail:

If Γ `L ϕ and Γ ⊆ ∆, then ∆ `L ϕ. (Monotonicity)

The least logic Min is described as:

Γ `Min ϕ iff ϕ ∈ Γ.
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Basic syntactical notions – 3
Theorem: a consequence of the empty set

(note that Min has no theorems).

Inconsistent logic Inc: the set of all consecutions
(equivalently: a logic where all formulas are theorems).

Almost Inconsistent logic AInc: the maximum logic without theorems
(note that Γ, ϕ `AInc ψ).

Theory: a set of formulas T such that if T `L ϕ then ϕ ∈ T. We denote
by Th(L) the set of all theories of L.

Note that
Th(L) can be seen as a closure system. We denote by ThL(Γ) the
theory generated in Th(L) by Γ (i.e., the intersection of all theories
containing Γ).
ThL(Γ) = {ϕ ∈ FmL | Γ `L ϕ}.
The set of all theorems is the least theory and it is generated by
the empty set.
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Basic syntactical notions – 4
Axiomatic system: a set AS of consecutions closed under
substitutions. An element Γ � ϕ is an

axiom if Γ = ∅,
finitary deduction rule if Γ is a finite,
infinitary deduction rule otherwise.

An axiomatic system is finitary if all its rules are finitary.

Proof: a proof of a formula ϕ from a set of formulas Γ in AS is a
well-founded rooted tree labeled by formulas such that

its root is labeled by ϕ and leaves by axioms of AS or elements of
Γ and
if a node is labeled by ψ and ∆ 6= ∅ is the set of labels of its
preceding nodes, then ∆ � ψ ∈ AS.

We write Γ ÀS ϕ if there is a proof of ϕ from Γ in AS.
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Basic syntactical notions – 5

Lemma
ÀS is the least logic containing the axiomatic system AS.

Presentation: We say that AS is an axiomatic system for (or a
presentation of) the logic L if L = ÀS . A logic is said to be finitary if it
has some finitary presentation.

Lemma
A logic L is finitary iff for each set of formulas Γ ∪ {ϕ} we have: if
Γ `L ϕ, then there is a finite Γ′ ⊆ Γ such that Γ′ `L ϕ.

Note that Inc,AInc,Min are finitary because:
Inc is axiomatized by axioms {ϕ | ϕ ∈ FmL}
AInc is axiomatized by unary rules {ϕ � ψ | ϕ,ψ ∈ FmL}
Min is axiomatized by by the empty set
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More interesting examples

Finitary axiomatic system for BCI in L→ = {→}
B (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

C (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

I ϕ→ ϕ

MP ϕ,ϕ→ ψ � ψ

Finitary axiomatic system for BCK in L→ = {→}
B (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

C (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

K ϕ→ (ψ → ϕ)

MP ϕ,ϕ→ ψ � ψ
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Even more interesting examples

Consider the following axioms in L→:

(c) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) contraction
(waj) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ) Wajsberg axiom
(lin) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ) linearity

and define the following logics:

Logic Presentation
FBCK BCK extended by (lin)
IL→ BCK extended by (c)
G→ BCK extended by (c) and (lin)
Ł→ BCK extended by (lin) and (waj)
CL→ BCK extended by (c), (lin), and (waj)
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Prominent axiomatic extensions of BCI

BCI

(w)

BCK

CL

Ł

FBCK

G

IL

(waj)

(waj)

(c)

(c)(lin)

(lin)(c)
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Famous examples
LCL = {→,∧,∨, 0}.

IL (intuitionistic logic): axiomatic expansion of IL→
CL (classical logic): axiomatic expansion of CL→
Ł (Łukasiewicz logic): axiomatic expansion of Ł→
G (Gödel–Dummett logic): axiomatic expansion of G→

by the axioms:
(⊥) 0→ ϕ

(axAdj) ϕ→ (ψ → ϕ ∧ ψ)

(LB1) ϕ ∧ ψ → ϕ

(LB2) ϕ ∧ ψ → ψ

(axInf) (ϕ→ ψ) ∧ (ϕ→ χ)→ (ϕ→ ψ ∧ χ)

(UB1) ϕ→ ϕ ∨ ψ
(UB2) ψ → ϕ ∨ ψ
(axSup) (ϕ→ χ) ∧ (ψ → χ)→ (ϕ ∨ ψ → χ)
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Remarks on the famous examples – 1

Classical logic has numerous other presentations more common
than the one used here.
Gödel–Dummett is usually presented in a language where ∨ is a
defined connective:

ϕ ∨ ψ = ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)

Then, Gödel–Dummett logic is the axiomatic extension of IL by
the axiom of prelinearity:

(ϕ→ ψ) ∨ (ψ → ϕ)
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Remarks on the famous examples – 2

Łukasiewicz logic is usually presented in a language where ∧ and
∨ are defined connectives:

ϕ ∨ ψ = (ϕ→ ψ)→ ψ ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ)

with an axiomatic system consisting of modus ponens and axioms
(B), (K), (waj), and

(¬ϕ→ ¬ψ)→ (ψ → ϕ).

Also, the following two connectives are usually defined in
Łukasiewicz logic:

ϕ& ψ = ¬(ϕ→ ¬ψ) ϕ⊕ ψ = ¬ϕ→ ψ.
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An infinitary example

A prominent extension of Łukasiewicz logic, denoted as Ł∞, is
obtained by adding the following infinitary rule:

{¬ϕ→ ϕ& n. . .& ϕ | n ≥ 1} � ϕ
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Basic semantical notions – 1

L-algebra: A = 〈A, 〈cA | c ∈ CL〉〉, where A 6= ∅ (universe) and
cA : An → A for each 〈c, n〉 ∈ L.

Algebra of formulas: the algebra FmL with domain FmL and operations
cFmL for each 〈c, n〉 ∈ L defined as:

cFmL(ϕ1, . . . , ϕn) = c(ϕ1, . . . , ϕn).

FmL is the absolutely free algebra in language L with
generators Var.

Homomorphism of algebras: a mapping f : A→ B such that for every
〈c, n〉 ∈ L and every a1, . . . , an ∈ A,

f (cA(a1, . . . , an)) = cB(f (a1), . . . , f (an)).

Note that substitutions are exactly endomorphisms of FmL.
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Examples of algebras – 1

Boolean algebra: A = 〈A,∧,∨,¬, 0, 1〉, where 〈A,∧,∨, 0, 1〉 is a
bounded distributive lattice and for every a ∈ A:

a ∧ ¬a = 0 and a ∨ ¬a = 1 (complement)

Prototypical example: power set algebra of a set A, i.e. the structure
〈P(A),∩,∪,−, ∅,A〉, where for every X ⊆ A we have −X = A \ X.

Stone’s representation theorem: each Boolean algebra can be
embedded into a Boolean algebra defined over the power set algebra
of some set.

We denote the class of all Boolean algebras as BA.
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Examples of algebras – 2
Heyting algebra: A = 〈A,∧,∨,→, 0, 1〉, where A = 〈A,∧,∨, 0, 1〉 is a
bounded distributive lattice and for every a, b, c ∈ A:

a ∧ b ≤ c if, and only, if a ≤ b→ c (residuation)

where ≤ is the canonical lattice order.

→ is called the residuum of ∧.

Pseudocomplement: ¬a = a→ 0 for a ∈ A.

We denote the class of all Heyting algebras as HA.

Each Boolean algebra can be seen as a Heyting algebra where the
residuum is defined as a→ b = ¬a ∨ b. Therefore, Boolean algebras
turn out to be exactly the Heyting algebras in which ¬ satisfies the
complement condition.
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Examples of algebras – 3

Gödel algebra or G-algebra: A Heyting algebra A = 〈A,∧,∨,→, 0, 1〉
such that for every a, b ∈ A:

(a→ b) ∨ (b→ a) = 1. (prelinearity )

We denote the class of all G-algebras as G.

BA ⊆ G ⊆ HA
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Examples of algebras – 4

MV-algebra: 〈A,⊕,¬, 0〉, where ⊕ is a binary operation, ¬ is a unary
operation and 0 is a constant such that the following are satisfied for
any a, b, c ∈ A:

1 a⊕ (b⊕ c) = (a⊕ b)⊕ c
2 a⊕ b = b⊕ a
3 a⊕ 0 = 0
4 ¬¬a = a,
5 ¬0⊕ a = ¬0,
6 ¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a.

We denote the class of all MV-algebras as MV.
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Lattice operations

Proposition

Let 〈A,⊕,¬, 0〉 be an MV-algebra. For each a, b ∈ A we define:

a & b = ¬(¬a⊕ ¬b)

a→ b = ¬(a & ¬b)

1 = ¬0

a ∨ b = a⊕ (b & ¬a)

a ∧ b = a & (b⊕ ¬a)
Then:

1 〈A,∧,∨, 0, 1〉 is a bounded distributive lattice, and
2 for each a, b ∈ A, we have: a & b ≤ c iff a ≤ b→ c.
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Examples of algebras – 5

the standard G-algebra: [0, 1]G = 〈[0, 1],∧,∨,→, 0, 1〉, where ∧ and
∨ are the lattice operations given by the natural order in [0, 1], and
for each a, b ∈ [0, 1]:

a→ b =

{
1 if a ≤ b,
b otherwise.

the standard MV-algebra: [0, 1]Ł = 〈[0, 1],⊕,¬, 0〉, where for each
a, b ∈ [0, 1], a⊕ b = min{a + b, 1} and ¬a = 1− a. The lattice
operations defined in the previous proposition coincide with the
lattice operations given by the natural order in [0, 1].
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Basic semantical notions – 2

L-matrix: a pair A = 〈A,F〉 where A is an L-algebra called the
algebraic reduct of A, and F is a subset of A called the filter of A. The
elements of F are called designated elements of A.

A matrix A = 〈A,F〉 is
trivial if F = A.
finite if A is finite.
Lindenbaum if A = FmL.

A-evaluation: a homomorphism from FmL to A, i.e. a mapping
e : FmL → A, such that for each 〈c, n〉 ∈ L and each n-tuple of formulas
ϕ1, . . . , ϕn we have:

e(c(ϕ1, . . . , ϕn)) = cA(e(ϕ1), . . . , e(ϕn)).
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Basic semantical notions – 3
Semantical consequence: A formula ϕ is a semantical consequence of
a set Γ of formulas w.r.t. a class K of L-matrices if for each 〈A,F〉 ∈ K
and each A-evaluation e, we have e(ϕ) ∈ F whenever e[Γ] ⊆ F; we
denote it by Γ |=K ϕ.

Exercise 1
Let K be a class of L-matrices. Then |=K is a logic in L.

Lemma (Tabular logics)
Furthermore, if K is a finite class of finite matrices, then the logic |=K
is finitary.

L-matrix: Let L be a logic in L and A an L-matrix. We say that A is an
L-matrix if L ⊆ |=A. We denote the class of L-matrices by MOD(L).
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Basic semantical notions – 4

Lemma (Images and preimages of models)
Let L be a logic in L and a mapping g : A→ B be a homomorphism of
L-algebras A,B. Then:

〈A, g−1[G]〉 ∈MOD(L), whenever 〈B,G〉 ∈MOD(L).

〈B, g[F]〉 ∈MOD(L), whenever 〈A,F〉 ∈MOD(L) and g is
surjective and g(x) ∈ g[F] implies x ∈ F.
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Basic semantical notions – 5

Logical filter: Given a logic L in L and an L-algebra A, a subset F ⊆ A
is an L-filter if 〈A,F〉 ∈MOD(L). We denote by FiL(A) the set of all
L-filters over A.

FiL(A) is a closure system and can be given a lattice structure by
defining for any F,G ∈ FiL(A), F ∧ G = F ∩ G and F ∨ G = FiAL(F ∪ G).

Generated filter: Given a set X ⊆ A, the logical filter generated by X is
FiAL(X) =

⋂
{F ∈ FiL(A) | X ⊆ F}.

FiMin(A) = P(A) FiAInc(A) = {∅,A} FiInc(A) = {A}
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Examples of logical filters – 1

Exercise 2
Let A be a Heyting algebra. Then F ∈ FiIL(A) iff F is a lattice filter
on A.
Let A be a G-algebra. Then F ∈ FiG(A) iff F is a lattice filter on A.
Let A be a Boolean algebra. Then F ∈ FiCL(A) iff F is a lattice filter
on A.
Let A be an MV-algebra. Then F ∈ FiŁ(A) iff F is a lattice filter on
A and for each x, y ∈ A such that x, x→ y ∈ F we have y ∈ F.
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Examples of logical filters – 2

A = 〈[0, 1]G, (0, 1]〉 ∈MOD(CL).

Indeed, it is a model of IL and it is easy to check that:

|=A ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

|=A ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
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Examples of logical filters – 3

Now we can show that Ł∞ is not finitary (hence, a proper extension of
Łukasiewicz logic).

MŁ = 〈[0, 1]Ł, {1}〉 ∈MOD(Ł∞). However, for each positive k ∈ N

{¬ϕ→ ϕn | 1 ≤ n < k} 6|=MŁ ϕ,

where by ϕn we denote ϕ& n. . .& ϕ. Indeed, it suffices to take the
evaluation e(ϕ) = k

k+1 and note that e(ϕ)n = k−n
k+1 ≥

1
k+1 = e(¬ϕ) for

n < k
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Examples of logical filters – 4
A model of Ł which is not a model of Ł∞.
C = 〈C,⊕,¬, 0〉 (Chang algebra):

C = {〈0, i〉 | i ∈ N} ∪ {〈1,−i〉 | i ∈ N}
0 = 〈0, 0〉

〈x, i〉 ⊕ 〈y, j〉 =


〈1, 0〉 if x + y = 2
〈1, 0〉 if x + y = 1 and i + j ≥ 0
〈x + y, i + j〉 otherwise

¬〈x, i〉 = 〈1− x,−i〉.

〈x, i〉& 〈y, j〉 =


〈0, 0〉 if x + y = 0
〈0, 0〉 if x + y = 1 and i + j ≤ 0
〈x + y− 1, i + j〉 otherwise

Now we consider the matrix C = 〈C, {〈1, 0〉}〉 and show that

{¬ϕ→ ϕn | n ≥ 1} 6|=C ϕ.

Indeed, e(ϕ) = 〈1,−1〉, and compute by induction that
〈1,−1〉n = 〈1,−n〉 and so e(¬ϕ→ ϕn) = 〈1,−1〉 ⊕ 〈1,−n〉 = 〈1, 0〉.
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Examples of logical filters – 5

For each n ≥ 2, take the subalgebra MVn of [0, 1]Ł with the n-element
domain {0, 1

n−1 , . . . , 1} and the matrix Łn = 〈MVn, {1}〉.

|=Łn is a finitary logic (by the lemma on tabular logics).

Łn ∈MOD(Ł) (by the lemma on preimages of models).

Łn ∈MOD(Ł∞) (checking the semantical validity of the infinitary rule).

Ł∞ ( |={Łn|n≥2}

The rule {(pi → pi+1)i(i+1) → q | i > 0} � q can be checked to be
sound in each Łn, while the evaluation e(q) = 0 and e(pi) = 1

i shows
that it is not derivable in Ł∞.
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Examples of logical filters – 6

Exercise 3
The logic BCI: By M we denote the L→-algebra with domain
{⊥,>, t, f} and:

→M > t f ⊥
> > ⊥ ⊥ ⊥
t > t f ⊥
f > ⊥ t ⊥
⊥ > > > >

Check that
FiBCI(M) = {{t,>}, {t, f ,>},M}.
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The first completeness theorem

Proposition
For any logic L in a language L, FiL(FmL) = Th(L).

Theorem
Let L be a logic. Then for each set Γ of formulas and each formula ϕ
the following holds: Γ `L ϕ iff Γ |=MOD(L) ϕ.

Carles Noguera (UTIA CAS) Logic and Implication SLALM 2019 34 / 81



Outline

1 Introduction

2 A general algebraic theory of logics

3 Weakly implicative logics

4 Substructural and semilinear logics

Carles Noguera (UTIA CAS) Logic and Implication SLALM 2019 35 / 81



Completeness theorem for classical logic

Suppose that T ∈ Th(CL) and ϕ /∈ T (T 6`CL ϕ). We want to show
that T 6|= ϕ in some meaningful semantics.
T 6|=〈FmL,T〉 ϕ. 1st completeness theorem

〈α, β〉 ∈ Ω(T) iff α↔ β ∈ T (congruence relation on FmL
compatible with T: if α ∈ T and 〈α, β〉 ∈ Ω(T), then β ∈ T).
Lindenbaum–Tarski algebra: FmL/Ω(T) is a Boolean algebra and
T 6|=〈FmL/Ω(T),T/Ω(T)〉 ϕ.

2nd completeness theorem

Lindenbaum Lemma: If ϕ /∈ T, then there is a maximal consistent
T ′ ∈ Th(CL) such that T ⊆ T ′ and ϕ /∈ T ′.
FmL/Ω(T ′) ∼= 2 (subdirectly irreducible Boolean algebra) and
T 6|=〈2,{1}〉 ϕ. 3rd completeness theorem
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Weakly implicative logics

Definition
A logic L in a language L is weakly implicative if there is a binary
connective→ (primitive or definable) such that:

(R) `L ϕ→ ϕ

(MP) ϕ,ϕ→ ψ `L ψ

(T) ϕ→ ψ,ψ → χ `L ϕ→ χ

(sCng) ϕ→ ψ,ψ → ϕ `L c(χ1, . . . , χi, ϕ, . . . , χn)→
c(χ1, . . . , χi, ψ, . . . , χn)

for each 〈c, n〉 ∈ L and each 0 ≤ i < n.
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Examples of (non-)weakly implicative logics – 1

Min and AInc are not weakly implicative because they have no
theorems (and hence no connective can satisfy the reflexivity
requirement).
Inc is weakly implicative (any binary connective works).
Since prefixing is a theorem of BCI, in particular we obtain

ϕ→ ψ,ψ → ϕ `BCI (ϕ→ χ)→ (ψ → χ)
ϕ→ ψ,ψ → ϕ `BCI (χ→ ϕ)→ (χ→ ψ)

Thus all extensions of BCI are weakly implicative.
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Examples of (non-)weakly implicative logics – 2

The axiomatic expansions of BCK we have seen are weakly
implicative.
It is enough to show:

ϕ→ ψ,ψ → ϕ ` ϕ ∨ χ→ ψ ∨ χ
ϕ→ ψ,ψ → ϕ ` ϕ ∧ χ→ ψ ∧ χ
ϕ→ ψ,ψ → ϕ ` χ ∨ ϕ→ χ ∨ ψ
ϕ→ ψ,ψ → ϕ ` χ ∧ ϕ→ χ ∧ ψ

Observe that the equivalence connective ≡ (defined as
(ϕ→ ψ) ∧ (ψ → ϕ)) is also a weak implication, though it differs
substantially from→ in logical behavior, for instance we have
ϕ ` ψ → ϕ but not ϕ ` ψ ≡ ϕ.
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Modal logics – 1

L2: LCL with an additional unary connective 2.

(K2) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

(T2) 2ϕ→ ϕ

(42) 2ϕ→ 22ϕ

(Nec2) ϕ � 2ϕ

Global modal logics:

K is the expansion of CL by (K2) and (Nec2).
T: axiomatic extension of K by (T2)

K4: axiomatic extension of K by (42)

S4: axiomatic extension of T by (42)

Carles Noguera (UTIA CAS) Logic and Implication SLALM 2019 40 / 81



Modal logics – 2

Local modal logics:
If L is a global modal logic, its local variant can be defined in two
equivalent ways:

1 as the axiomatic expansion of CL by all the theorems of L,
2 by taking as axioms all the formulas 2 n. . .2ϕ for each n ≥ 0 and

each axiom ϕ of L and modus ponens as the only inference rule.
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Examples of (non-)weakly implicative logics – 3

Global modal logics are weakly implicative (using the axiom (K2)
and the rule of necessitation).
Local modal logics are not weakly implicative. Indeed, let L be any
such logic and assume that 1→ ϕ,ϕ→ 1 `L 21→ 2ϕ. Since L
expands CL, we know that

`L ϕ→ 1 ϕ `L 1→ ϕ `L 1.

Thus also `L 21 and so ϕ `L 2ϕ, i.e., L is equal to its global
variant, which is known not be the case.
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Congruence Property – 1

Conventions
Unless said otherwise, L is a weakly implicative in a language L with
an implication→. We write:

ϕ↔ ψ instead of {ϕ→ ψ,ψ → ϕ}
Γ ` ∆ whenever Γ ` χ for each χ ∈ ∆

Γ a` ∆ whenever Γ ` ∆ and ∆ ` Γ.

Theorem
Let ϕ,ψ, χ be formulas. Then:
`L ϕ↔ ϕ

ϕ↔ ψ `L ψ ↔ ϕ

ϕ↔ δ, δ ↔ ψ `L ϕ↔ ψ

ϕ↔ ψ `L χ↔ χ̂, where χ̂ is obtained from χ by replacing
some occurrences of ϕ in χ by ψ.
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Congruence Property – 2

Corollary
Let→′ be a connective satisfying (R), (MP), (T), (sCng). Then

ϕ↔ ψ a`L ϕ↔′ ψ.
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Leibniz congruence – 1

Let us fix a weakly implicative logic L.

Definition
Let A = 〈A,F〉 be an L-matrix. We define:

the matrix preorder ≤A of A as

a ≤A b iff a→A b ∈ F

the Leibniz congruence ΩA(F) of A as

〈a, b〉 ∈ ΩA(F) iff a ≤A b and b ≤A a.

A congruence θ of A is logical in a matrix 〈A,F〉 if for each a, b ∈ A if
a ∈ F and 〈a, b〉 ∈ θ, then b ∈ F.
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Leibniz congruence – 2

Theorem
Let A = 〈A,F〉 be an L-matrix. Then:

1 ≤A is a preorder.
2 ΩA(F) is the largest logical congruence of 〈A,F〉.
3 〈a, b〉 ∈ ΩA(F) iff for each χ ∈ FmL and each A-evaluation e:

e[p : a](χ) ∈ F iff e[p : b](χ) ∈ F.

Proof.
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Leibniz congruence – 2

Theorem
Let A = 〈A,F〉 be an L-matrix. Then:

1 ≤A is a preorder.
2 ΩA(F) is the largest logical congruence of 〈A,F〉.
3 〈a, b〉 ∈ ΩA(F) iff for each χ ∈ FmL and each A-evaluation e:

e[p : a](χ) ∈ F iff e[p : b](χ) ∈ F.

Proof.
1. Take A-evaluation e such that e(p) = a, e(q) = b, and e(r) = c.
Recall that in L we have: `L p → p and p → q, q → r `L p → r. As
A = MOD(L) we have: e(p→ p) ∈ F, i.e., a ≤A a and
if e(p → q), e(q → r) ∈ F, then e(p → r) ∈ F i.e., if a ≤A b and b ≤A c,
then a ≤A c.

Carles Noguera (UTIA CAS) Logic and Implication SLALM 2019 46 / 81



Leibniz congruence – 2

Theorem
Let A = 〈A,F〉 be an L-matrix. Then:

1 ≤A is a preorder.
2 ΩA(F) is the largest logical congruence of 〈A,F〉.
3 〈a, b〉 ∈ ΩA(F) iff for each χ ∈ FmL and each A-evaluation e:

e[p : a](χ) ∈ F iff e[p : b](χ) ∈ F.

Proof.
2. ΩA(F) is obviously an equivalence relation. It is a congruence due to
(sCng) and logical due to (MP).
Take a logical congruence θ and 〈a, b〉 ∈ θ. Since 〈a, a〉 ∈ θ, we have
〈a→A a, a→A b〉 ∈ θ. As a→A a ∈ F and θ is logical we get a→A b ∈ F,
i.e., a ≤A b. The proof of b ≤A a is analogous.
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Leibniz congruence – 2

Theorem
Let A = 〈A,F〉 be an L-matrix. Then:

1 ≤A is a preorder.
2 ΩA(F) is the largest logical congruence of 〈A,F〉.
3 〈a, b〉 ∈ ΩA(F) iff for each χ ∈ FmL and each A-evaluation e:

e[p : a](χ) ∈ F iff e[p : b](χ) ∈ F.

Proof.
3. One direction is a corollary of the congruence property and (MP).
The converse one: set χ = p → q and e(q) = b. Then, a →A b ∈ F
iff b →A b ∈ F, thus a ≤A b. The proof of b ≤A a is analogous (using
e(q) = a).
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Algebraic counterpart

Definition
An L-matrix A = 〈A,F〉 is reduced, A ∈MOD∗(L) in symbols, if ΩA(F)
is the identity relation IdA.

An algebra A is L-algebra, A ∈ ALG∗(L) in symbols, if there is a set
F ⊆ A such that 〈A,F〉 ∈MOD∗(L).

Note that ΩA(A) = A2. Thus from FiInc(A) = {A} we obtain:

A ∈ ALG∗(Inc) iff A is a singleton
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Examples: classical logic CL and logic BCI
Exercise 4
Classical logic: prove that for any Boolean algebra A:

ΩA({1}) = IdA i.e., A ∈ ALG∗(CL).

On the other hand, show that:

Ω4({a, 1}) = IdA ∪ {〈1, a〉, 〈0,¬a〉} i.e. 〈4, {a, 1}〉 /∈MOD∗(CL).

BCI: recall the algebra M defined via:

→M > t f ⊥
> > ⊥ ⊥ ⊥
t > t f ⊥
f > ⊥ t ⊥
⊥ > > > >

Show that:

ΩM({t,>}) = ΩM({t, f ,>}) = IdM i.e. M ∈ ALG∗(BCI).
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Factorizing matrices – 1
Let us take A = 〈A,F〉 ∈MOD(L). We write:

A∗ for A/ΩA(F)

[·]F for the canonical epimorphism of A onto A∗ defined as:

[a]F = {b ∈ A | 〈a, b〉 ∈ ΩA(F)}

A∗ for 〈A∗, [F]F〉.

Lemma
Let A = 〈A,F〉 ∈MOD(L) and a, b ∈ A. Then:

1 a ∈ F iff [a]F ∈ [F]F.
2 A∗ ∈MOD(L).
3 [a]F ≤A∗ [b]F iff a→A b ∈ F.
4 A∗ ∈MOD∗(L).
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Factorizing matrices – 2

Proof.
1 One direction is trivial. Conversely: [a]F ∈ [F]F implies that

[a]F = [b]F for some b ∈ F; thus 〈a, b〉 ∈ ΩA(F) and, since ΩA(F) is
a logical congruence, we obtain a ∈ F.

2 Recall that the second claim of Lemma 1.12 says that for a
surjective g : A→ B and F ∈ FiL(A) we get g[F] ∈ FiL(B),
whenever g(x) ∈ g[F] implies x ∈ F.

3 [a]F ≤A∗ [b]F iff [a]F →A∗ [b]F ∈ [F]F iff [a→A b]F ∈ [F]F iff
a→A b ∈ F.

4 Assume that 〈[a]F, [b]F〉 ∈ ΩA∗([F]F), i.e., [a]F ≤A∗ [b]F and
[b]F ≤A∗ [a]F. Therefore a→A b ∈ F and b→A a ∈ F, i.e.,
〈a, b〉 ∈ ΩA(F). Thus [a]F = [b]F.

Carles Noguera (UTIA CAS) Logic and Implication SLALM 2019 50 / 81



Lindenbaum–Tarski matrix

Let L be a weakly implicative logic in L and T ∈ Th(L). For every
formula ϕ, we define the set

[ϕ]T = {ψ ∈ FmL | ϕ↔ ψ ⊆ T}.

The Lindenbaum–Tarski matrix with respect to L and T, LindTT , has
the filter {[ϕ]T | ϕ ∈ T} and algebraic reduct with the domain
{[ϕ]T | ϕ ∈ FmL} and operations:

cLindTT ([ϕ1]T , . . . , [ϕn]T) = [c(ϕ1, . . . , ϕn)]T

Clearly, for every T ∈ Th(L) we have:

LindTT = 〈FmL,T〉∗.
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The second completeness theorem

Theorem
Let L be a weakly implicative logic. Then for any set Γ of formulas and
any formula ϕ the following holds:

Γ `L ϕ iff Γ |=MOD∗(L) ϕ.

Proof.
Using just the soundness part of the first completeness theorem it
remains to prove:

Γ |=MOD∗(L) ϕ implies Γ `L ϕ.

Take the Lindenbaum–Tarski matrix LindTThL(Γ) = 〈FmL,ThL(Γ)〉∗ and
evaluation e(ψ) = [ψ]ThL(Γ). As clearly e[Γ] ⊆ e[ThL(Γ)] = [ThL(Γ)]ThL(Γ),
then, as LindTThL(Γ) is an L-model, we have:
e(ϕ) = [ϕ]ThL(Γ) ∈ [ThL(Γ)]ThL(Γ), and so ϕ ∈ ThL(Γ) i.e., Γ `L ϕ.
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Completeness theorem for classical logic

Suppose that T ∈ Th(CL) and ϕ /∈ T (T 6`CL ϕ). We want to show
that T 6|= ϕ in some meaningful semantics.
T 6|=〈FmL,T〉 ϕ. 1st completeness theorem

〈α, β〉 ∈ Ω(T) iff α↔ β ∈ T (congruence relation on FmL
compatible with T: if α ∈ T and 〈α, β〉 ∈ Ω(T), then β ∈ T).
Lindenbaum–Tarski algebra: FmL/Ω(T) is a Boolean algebra and
T 6|=〈FmL/Ω(T),T/Ω(T)〉 ϕ.

2nd completeness theorem

Lindenbaum Lemma: If ϕ /∈ T, then there is a maximal consistent
T ′ ∈ Th(CL) such that T ⊆ T ′ and ϕ /∈ T ′.
FmL/Ω(T ′) ∼= 2 (subdirectly irreducible Boolean algebra) and
T 6|=〈2,{1}〉 ϕ. 3rd completeness theorem
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Closure systems and closure operators – 1

Closure system over a set A: a collection of subsets C ⊆ P(A) closed
under arbitrary intersections and such that A ∈ C. The elements of C
are called closed sets.

Closure operator over a set A: a mapping C : P(A)→ P(A) such that
for every X,Y ⊆ A:

1 X ⊆ C(X),
2 C(X) = C(C(X)), and
3 if X ⊆ Y, then C(X) ⊆ C(Y).

Exercise 5
If C is a closure operator, {X ⊆ A | C(X) = X} is a closure system.

If C is closure system, C(X) =
⋂
{Y ∈ C | X ⊆ Y} is a closure operator.
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Closure systems and closure operators – 2

A base of a closure system C over A is any B ⊆ C satisfying one of the
following equivalent conditions:

1 C is the coarsest closure system containing B.
2 For every T ∈ C, there is a D ⊆ B such that T =

⋂
D.

3 For every T ∈ C, T =
⋂
{B ∈ B | T ⊆ B}.

4 For every Y ∈ C and a ∈ A \ Y there is Z ∈ B such that Y ⊆ Z and
a /∈ Z.

Exercise 6
Show that the four definitions are equivalent.

An element X of a closure system C over A is called (finitely)
∩-irreducible if for each (finite non-empty) set Y ⊆ C such that
X =

⋂
Y∈Y Y, there is Y ∈ Y such that X = Y.
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Abstract Lindenbaum Lemma
An element X of a closure system C over A is called maximal w.r.t. an
element a if it is a maximal element of the set {Y ∈ C | a /∈ Y} w.r.t. the
order given by inclusion.

Proposition
Let C be a closure system over a set A and T ∈ C. Then, T is maximal
w.r.t. an element if, and only if, T is ∩-irreducible.

A closure operator C is finitary if for every X ⊆ A,
C(X) =

⋃
{C(Y) | Y ⊆ X and Y is finite}.

Lemma
Let C be a finitary closure operator and C its corresponding closure
system. If T ∈ C and a /∈ T, then there is T ′ ∈ C such that T ⊆ T ′ and T ′

is maximal with respect to a. ∩-irreducible closed sets form a base.
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Operations on matrices
〈A,F〉: first-order structure in the equality-free predicate language with
function symbols from L and a unique unary predicate symbol
interpreted by F.

Submatrix: 〈A,F〉 ⊆ 〈B,G〉 if A ⊆ B and F = A ∩ G. Operator: S.
Homomorphic image: A homomorphism from 〈A,F〉 to 〈B,G〉 is a
homomorphism of algebras h : A→ B such that h[F] ⊆ G.
Direct product: 〈A,F〉 =

∏
i∈I{〈Ai,Fi〉 | i ∈ I} if A =

∏
i∈I Ai,

f A(a1, . . . , an)(i) = f Ai(a1(i), . . . , an(i)). F =
∏

i∈I Fi. πj : A � Aj.
Operator: P.

Exercise 7
Let L be a weakly implicative logic. Then:

1 SP(MOD(L)) ⊆MOD(L).
2 SP(MOD∗(L)) ⊆MOD∗(L).
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Subdirect products and subdirect irreducibility

A is representable as a subdirect product of {Ai | i ∈ I} if there is an
embedding α from A into

∏
i∈I Ai s.t. for every i ∈ I, πi ◦ α is a

surjective homomorphism.

Operator PSD(K).

A ∈ K is (finitely) subdirectly irreducible relative to K if for every (finite
non-empty) subdirect representation α of A with a family
{Ai | i ∈ I} ⊆ K there is i ∈ I such that πi ◦ α is an isomorphism.

The class of all (finitely) subdirectly irreducible matrices relative to K is
denoted as KR(F)SI.

KRSI ⊆ KRFSI.
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Characterization of RSI and RFSI reduced models

Theorem
Given a weakly implicative logic L and A = 〈A,F〉 ∈MOD∗(L), we
have:

1 A ∈MOD∗(L)RSI iff F is ∩-irreducible in FiL(A).
2 A ∈MOD∗(L)RFSI iff F is finitely ∩-irreducible in FiL(A).
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Subdirect representation

Theorem
If L is a finitary weakly implicative logic, then

MOD∗(L) = PSD(MOD∗(L)RSI),

in particular every matrix in MOD∗(L) is representable as a subdirect
product of matrices in MOD∗(L)RSI.
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The third completeness theorem

Theorem
Let L be a finitary weakly implicative logic. Then for any set Γ of
formulas and any formula ϕ the following holds:

Γ `L ϕ iff Γ |=MOD∗(L)RSI ϕ.
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Non-associative residuated lattices [Galatos–Ono. APAL 2010]

A pointed residuated lattice-ordered groupoid with unit A is algebra of
a type LSL = {&, \, /,∧,∨, 0, 1}:

〈A,∧,∨〉 is a lattice
〈A,&, 1〉 is a groupoid with unit 1

for each x, y, z ∈ A:

x & y ≤ z IFF x ≤ z / y IFF y ≤ x \ z

For simplicity we will speak about SL-algebras

SL-algebras form a variety, we will denote it as SL.
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Classes of residuated structures
Any quasivariety of SL-algebras, possibly with additional operators, will
be called a class of residuated structures.

Subvarieties of SL, where & is associative, commutative,
idempotent, divisible, etc.
Integral SL-algebras: those where 1 is a top element of A

Semilinear classes (those generated by their linearly ordered
members)

G-algebras (associative, commutative, integral,
semilinear SL-algebras where x & y = x ∧ y)

MV-algebras (associative, commutative, integral, divisible,
semilinear SL-algebras where (x→ 0)→ 0 = x)

Boolean algebras (idempotent MV-algebras)

Plus any of these with additional operators . . .
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The logic of SL-algebras

The relation `SL defined as:

Γ `SL ϕ iff {ψ ∧ 1 ≈ 1 | ψ ∈ Γ} |=SL ϕ ∧ 1 ≈ 1

is a logic.
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The logic of SL-algebras

The relation `SL defined as:

Γ `SL ϕ iff {ψ ≥ 1 | ψ ∈ Γ} |=SL ϕ ≥ 1

is a logic.
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Axiomatization SL for SL [Galatos–Ono. APAL, 2010]

Axioms:
ϕ ∧ ψ \ ϕ ϕ ∧ ψ \ ψ (χ \ ϕ) ∧ (χ \ ψ) \ (χ \ ϕ ∧ ψ)
ϕ \ ϕ ∨ ψ ψ \ ϕ ∨ ψ (ϕ \ χ) ∧ (ψ \ χ) \ (ϕ ∨ ψ \ χ)
ϕ \ ((ψ / ϕ) \ ψ) ψ \ (ϕ \ ϕ& ψ) (χ / ϕ) ∧ (χ / ψ) \ (χ / ϕ ∨ ψ)

1 1 \ (ϕ \ ϕ) ϕ \ (1 \ ϕ)

Rules:
{ϕ,ϕ \ ψ} � ψ {ϕ} � (ϕ \ ψ) \ ψ
{ϕ \ (ψ \ χ)} � ψ \ (χ / ϕ) {ψ / ϕ} � ϕ \ ψ
{ϕ \ ψ} � (ψ \ χ) \ (ϕ \ χ) {ψ \ χ} � (ϕ \ ψ) \ (ϕ \ χ)
{ϕ,ψ} � ϕ ∧ ψ {ψ \ (ϕ \ χ)} � ϕ& ψ \ χ
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A formal definition of substructural logics

We write
ϕ→ ψ instead of ϕ \ ψ
ϕ↔ ψ instead of (ϕ→ ψ) ∧ (ψ → ϕ)

Definition
A finitary logic L in a language L is a substructural logic if
L ⊇ LSL

If T `SL ϕ, then T `L ϕ

for each n, i < n, and each n-ary connective c ∈ L \ LSL holds:

ϕ↔ ψ `L c(χ1, . . . χi, ϕ, . . . , χn)↔ c(χ1, . . . χi, ψ, . . . , χn)

The last condition can be proven for all connectives of LSL. Hence, all
substructural logics are weakly implicative.
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From substructural logics to
classes of residuated structures

Theorem
Let L be a substructural logic. We say that an L-algebra A is an
L-algebra, whenever

1 its LSL-reduct is an SL-algebra and
2 T `L ϕ implies that {ψ ≥ 1 | ψ ∈ T} |=A ϕ ≥ 1

The class of all L-algebras, denoted as QL, is a class of residuated
structures and

T `L ϕ iff {ψ ≥ 1 | ψ ∈ T} |=QL ϕ ≥ 1
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From substructural logics to
classes of residuated structures and back

Theorem
Let Q be a class of residuated structures of type L ⊇ LSL. Then the
relation LQ defined as:

T `LQ ϕ iff {ψ ≥ 1 | ψ ∈ T} |=Q ϕ ≥ 1

is a substructural logic. Moreover:

E |=Q α ≈ β iff {ϕ↔ ψ | ϕ ≈ ψ ∈ E} `LQ α↔ β
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It gets even better

Theorem
The operators Q? and L? are dual-lattice isomorphisms between the
lattice of substructural logics in language L and the lattice of
subquasivarieties of SL-algebras with operators L \ LSL.
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Examples of substructural logics

CL, IL, G, Ł, etc.
expansions by additional connectives, e.g. (classical) modalities,
exponentials in linear logic and Baaz’s Delta in fuzzy logics

Special axioms:

usual name s axioms
associativity a (ϕ& ψ) & χ↔ ϕ& (ψ & χ)
exchange e ϕ& ψ → ψ & ϕ

contraction c ϕ→ ϕ& ϕ

weakening w ϕ& ψ → ψ and 0→ ϕ

Logic given by these axioms; let X ⊆ {e, c,w} we define logics

SLX axiomatized by adding axioms from X of those of SL

FLX axiomatized by adding associativity to SLX
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Proof by cases

For classical or intuitionistic logic we have:

Γ, ϕ `L χ Γ, ψ `L χ

Γ ∪ {ϕ ∨ ψ} `L χ

But in FLe it would entail ϕ ∨ ψ `FLe (ϕ ∧ 1) ∨ (ψ ∧ 1), i.e.,

(ϕ ∨ ψ) ∧ 1 ≈ 1 |=QFLe
(ϕ ∧ 1) ∨ (ψ ∧ 1) ≈ 1

which can be easily refuted

On the other hand, we can show that:

Γ, ϕ `FLe χ Γ, ψ `FLe χ

Γ ∪ {(ϕ ∧ 1) ∨ (ψ ∧ 1)} `FLe χ
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Generalized disjunctions

Let ∇(p, q,−→r ) be a set of formulas. We write

ϕ∇ ψ =
⋃
{∇(ϕ,ψ,−→α ) | −→α ∈ Fm≤ωL }.

Definition
∇ is a p-disjunction if:

(PD) ϕ `L ϕ∇ ψ and ψ `L ϕ∇ ψ
PCP Γ, ϕ `L χ and Γ, ψ `L χ implies Γ, ϕ∇ ψ `L χ

Definition
A logic L is a p-disjunctional if it has a p-disjunction.

We drop the prefix ‘p-’ if there are no parameters −→r in ∇
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Separating examples

Example
∨ is a disjunction in FLew

∨ is not a disjunction in FLe,

but (p ∧ 1) ∨ (q ∧ 1) is
No single formula is a disjunction in G→

but the set {(p→ q)→ q, (q→ p)→ p} is
No finite set of formulas is a disjunction in K

but the set {2np ∨2mq | n,m ≥ 0} is
No set of formulas in two variables is a disjunction in IL→

but the formula (p→ r)→ ((q→ r)→ r) is a p-disjunction.
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Filters in p-disjunctional logics

Theorem
Let L be a logic with a p-disjunction ∇. Then for each L-algebra A and
each X,Y ∪ {x, y} ⊆ A:

Fi(X, x) ∩ Fi(X, y) = Fi(X, x∇A y)

Theorem
Let L be a substructural logic. TFAE:

1 L is p-disjunctional
2 The lattice of all L-filters on any L-algebra is distributive
3 QL is relative-congruence-distributive
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∇-prime filters

Definition
A filter F on A is ∇-prime if for every a, b ∈ A, a∇A b ⊆ F implies a ∈ F

or b ∈ F.

Theorem
Let ∇ be a p-disjunction in L and A an L-algebra. Then,

A ∈ (QL)RFSI iff the filter [1〉 is ∇-prime.
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Semilinear logics

Let us denote by Q`
L the class of linearly ordered L-algebras.

Definition
A substructural logic L is called semilinear if

T `L ϕ iff {ψ ≥ 1 | ψ ∈ T} |=Q`
L
ϕ ≥ 1

Carles Noguera (UTIA CAS) Logic and Implication SLALM 2019 77 / 81



Characterizations of substructural semilinear logics

Theorem
Let L be a substructural logic. TFAE:

1 L is semilinear
2 QL = Q(Q`

L)

3 Q`
L = (QL)RFSI

4 Each L-algebra is a subdirect product of L-chains
5 Any L-filter in an L-algebra is an intersection of linear ones

a filter F is linear if x→ y ∈ F or y→ x ∈ F, for each x, y
6 The following metarule holds:

T, ϕ→ ψ `L χ T, ψ → ϕ `L χ

T `L χ
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Characterizations of substructural semilinear logics

Theorem
Let L be a substructural logic and an axiomatic system AX . TFAE:

1 L is semilinear,
2 L proves (ϕ→ ψ) ∨ (ψ → ϕ) and enjoys the metarule:

T, ϕ `L χ T, ψ `L χ

T, ϕ ∨ ψ `L χ

3 L proves (ϕ→ ψ) ∨ (ψ → ϕ) and any L-filter in an L-algebra is an
intersection of ∨-prime ones,

4 L proves (ϕ→ ψ) ∨ (ψ → ϕ) and for every rule T � ϕ in AX and
propositional variable p not occurring in T, ϕ we have

{ψ ∨ χ | ψ ∈ T} `L ϕ ∨ χ
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Wanna know more?

Forthcoming book:

P. Cintula, C.N. Logic and Implication: An introduction to the general
algebraic study of non-classical logics, Trends in Logic, Springer.
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Implication gives a nice bridge between logic and
algebra . . .
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