Logic and Implication

An introduction to the general algebraic study of non-classical logics

Carles Noguera

Institute of Information Theory and Automation Czech Academy of Sciences

SLALM 2019

Outline

- Introduction
- A general algebraic theory of logics
- Weakly implicative logics
- Substructural and semilinear logics

Logic is the study of correct reasoning.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics.
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics.
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics.
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.
- AAL describes the role of connectives in (non-)classical logics.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics.
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.
- AAL describes the role of connectives in (non-)classical logics.
- Protoalgebraic logics and their subclasses are based on a general notion of equivalence.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics.
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.
- AAL describes the role of connectives in (non-)classical logics.
- Protoalgebraic logics and their subclasses are based on a general notion of equivalence.
- Implication has a crucial role in reasoning (entailment, consequence, preservation of truth,...)

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics.
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.
- AAL describes the role of connectives in (non-)classical logics.
- Protoalgebraic logics and their subclasses are based on a general notion of equivalence.
- Implication has a crucial role in reasoning (entailment, consequence, preservation of truth,...)
- The goal of this course is to present an AAL theory based on implication, together with a wealth of examples of (non-)classical logics.

Outline

- Introduction
- A general algebraic theory of logics
- Weakly implicative logics
- Substructural and semilinear logics

Basic syntactical notions - 1

Propositional language: a countable type \mathcal{L} , i.e. a function $ar\colon C_{\mathcal{L}}\to N$, where $C_{\mathcal{L}}$ is a countable set of symbols called connectives, giving for each one its arity. Nullary connectives are also called truth-constants. We write $\langle c,n\rangle\in\mathcal{L}$ whenever $c\in C_{\mathcal{L}}$ and ar(c)=n.

Formulas: Let Var be a fixed infinite countable set of symbols called variables. The set $Fm_{\mathcal{L}}$ of formulas in \mathcal{L} is the least set containing Var and closed under connectives of \mathcal{L} , i.e. for each $\langle c, n \rangle \in \mathcal{L}$ and every $\varphi_1, \ldots, \varphi_n \in Fm_{\mathcal{L}}, c(\varphi_1, \ldots, \varphi_n)$ is a formula.

Substitution: a mapping $\sigma \colon Fm_{\mathcal{L}} \to Fm_{\mathcal{L}}$, such that $\sigma(c(\varphi_1, \ldots, \varphi_n)) = c(\sigma(\varphi_1), \ldots, \sigma(\varphi_n))$ holds for each $\langle c, n \rangle \in \mathcal{L}$ and every $\varphi_1, \ldots, \varphi_n \in Fm_{\mathcal{L}}$.

Consecution: a pair $\Gamma \rhd \varphi$, where $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$.

Basic syntactical notions – 2

A set L of consecutions can be seen as a relation between sets of formulas and formulas. We write ' $\Gamma \vdash_{L} \varphi$ ' instead of ' $\Gamma \rhd \varphi \in L$ '.

Definition

A set L of consecutions in \mathcal{L} is called a logic in \mathcal{L} whenever

• If $\varphi \in \Gamma$, then $\Gamma \vdash_{\mathbf{L}} \varphi$.

- (Reflexivity)
- If $\Delta \vdash_{\mathsf{L}} \psi$ for each $\psi \in \Gamma$ and $\Gamma \vdash_{\mathsf{L}} \varphi$, then $\Delta \vdash_{\mathsf{L}} \varphi$.

(Cut)

• If $\Gamma \vdash_{\mathsf{L}} \varphi$, then $\sigma[\Gamma] \vdash_{\mathsf{L}} \sigma(\varphi)$ for each substitution σ .

(Structurality)

Observe that reflexivity and cut entail:

• If $\Gamma \vdash_{\mathsf{L}} \varphi$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash_{\mathsf{L}} \varphi$.

(Monotonicity)

The least logic Min is described as:

$$\Gamma \vdash_{\mathsf{Min}} \varphi \qquad \mathsf{iff} \qquad \varphi \in \Gamma.$$

Basic syntactical notions - 3

Theorem: a consequence of the empty set

(note that Min has no theorems).

Inconsistent logic Inc: the set of all consecutions (equivalently: a logic where all formulas are theorems).

Almost Inconsistent logic AInc: the maximum logic without theorems (note that $\Gamma, \varphi \vdash_{AInc} \psi$).

Theory: a set of formulas T such that if $T \vdash_{L} \varphi$ then $\varphi \in T$. We denote by Th(L) the set of all theories of L.

Note that

- $\operatorname{Th}(L)$ can be seen as a closure system. We denote by $\operatorname{Th}_L(\Gamma)$ the theory generated in $\operatorname{Th}(L)$ by Γ (i.e., the intersection of all theories containing Γ).
- $\operatorname{Th}_{L}(\Gamma) = \{ \varphi \in \operatorname{Fm}_{\mathcal{L}} \mid \Gamma \vdash_{L} \varphi \}.$
- The set of all theorems is the least theory and it is generated by the empty set.

Basic syntactical notions – 4

Axiomatic system: a set \mathcal{AS} of consecutions closed under substitutions. An element $\Gamma \rhd \varphi$ is an

- axiom if $\Gamma = \emptyset$,
- finitary deduction rule if Γ is a finite,
- infinitary deduction rule otherwise.

An axiomatic system is finitary if all its rules are finitary.

Proof: a proof of a formula φ from a set of formulas Γ in \mathcal{AS} is a well-founded rooted tree labeled by formulas such that

- its root is labeled by φ and leaves by axioms of \mathcal{AS} or elements of Γ and
- if a node is labeled by ψ and $\Delta \neq \emptyset$ is the set of labels of its preceding nodes, then $\Delta \rhd \psi \in \mathcal{AS}$.

We write $\Gamma \vdash_{\mathcal{AS}} \varphi$ if there is a proof of φ from Γ in \mathcal{AS} .

Basic syntactical notions - 5

Lemma

 \vdash_{AS} is the least logic containing the axiomatic system AS.

Presentation: We say that \mathcal{AS} is an axiomatic system for (or a presentation of) the logic L if $L = \vdash_{\mathcal{AS}}$. A logic is said to be finitary if it has some finitary presentation.

Lemma

A logic L is finitary iff for each set of formulas $\Gamma \cup \{\varphi\}$ we have: if $\Gamma \vdash_{\mathsf{L}} \varphi$, then there is a finite $\Gamma' \subseteq \Gamma$ such that $\Gamma' \vdash_{\mathsf{L}} \varphi$.

Note that Inc, AInc, Min are finitary because:

```
Inc is axiomatized by axioms \{\varphi \mid \varphi \in Fm_{\mathcal{L}}\}
AInc is axiomatized by unary rules \{\varphi \rhd \psi \mid \varphi, \psi \in Fm_{\mathcal{L}}\}
Min is axiomatized by by the empty set
```

More interesting examples

Finitary axiomatic system for BCI in $\mathcal{L}_{\rightarrow} = \{\rightarrow\}$

$$\mathsf{B} \ (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\mathbf{C} \ (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

 $\mathsf{MP}\ \varphi, \varphi \to \psi \rhd \psi$

Finitary axiomatic system for BCK in $\mathcal{L}_{\rightarrow} = \{\rightarrow\}$

$$\mathsf{B}\ (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\mathbf{C} \ (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

$$\mathsf{K} \ \varphi \to (\psi \to \varphi)$$

$$\mathsf{MP}\ \varphi, \varphi \to \psi \rhd \psi$$

Even more interesting examples

Consider the following axioms in $\mathcal{L}_{\rightarrow}$:

$$\begin{array}{lll} \text{(c)} & (\varphi \to (\varphi \to \psi)) \to (\varphi \to \psi) & \text{contraction} \\ \text{(waj)} & ((\varphi \to \psi) \to \psi) \to ((\psi \to \varphi) \to \varphi) & \text{Wajsberg axiom} \\ \text{(lin)} & ((\varphi \to \psi) \to \chi) \to (((\psi \to \varphi) \to \chi) \to \chi) & \text{linearity} \\ \end{array}$$

and define the following logics:

Logic	Presentation
FBCK	BCK extended by (lin)
$\mathrm{IL}_{ ightarrow}$	BCK extended by (c)
G_{\rightarrow}	BCK extended by (c) and (lin)
${\rm L}_{\rightarrow}$	BCK extended by (lin) and (waj)
$\mathrm{CL}_{ ightarrow}$	BCK extended by (c), (lin), and (waj)

Prominent axiomatic extensions of BCI

Famous examples

$$\mathcal{L}_{CL} = \{\rightarrow, \land, \lor, \overline{0}\}.$$

IL (intuitionistic logic): axiomatic expansion of IL $_{\rightarrow}$ CL (classical logic): axiomatic expansion of CL $_{\rightarrow}$ Ł (Łukasiewicz logic): axiomatic expansion of Ł $_{\rightarrow}$ G (Gödel–Dummett logic): axiomatic expansion of G $_{\rightarrow}$

by the axioms:

(L)
$$\overline{0} \rightarrow \varphi$$

(axAdj) $\varphi \rightarrow (\psi \rightarrow \varphi \wedge \psi)$
(LB₁) $\varphi \wedge \psi \rightarrow \varphi$
(LB₂) $\varphi \wedge \psi \rightarrow \psi$
(axInf) $(\varphi \rightarrow \psi) \wedge (\varphi \rightarrow \chi) \rightarrow (\varphi \rightarrow \psi \wedge \chi)$
(UB₁) $\varphi \rightarrow \varphi \vee \psi$
(UB₂) $\psi \rightarrow \varphi \vee \psi$
(axSup) $(\varphi \rightarrow \chi) \wedge (\psi \rightarrow \chi) \rightarrow (\varphi \vee \psi \rightarrow \chi)$

Remarks on the famous examples – 1

- Classical logic has numerous other presentations more common than the one used here.
- Gödel–Dummett is usually presented in a language where ∨ is a defined connective:

$$\varphi \vee \psi = ((\varphi \to \psi) \to \psi) \wedge ((\psi \to \varphi) \to \varphi)$$

Then, Gödel–Dummett logic is the axiomatic extension of IL by the axiom of *prelinearity*:

$$(\varphi \to \psi) \lor (\psi \to \varphi)$$

Remarks on the famous examples – 2

 Łukasiewicz logic is usually presented in a language where ∧ and ∨ are defined connectives:

$$\varphi \lor \psi = (\varphi \to \psi) \to \psi \qquad \qquad \varphi \land \psi = \neg(\neg \varphi \lor \neg \psi)$$

with an axiomatic system consisting of $modus\ ponens$ and axioms $(B),\ (K),\ (waj),\ and$

$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi).$$

Also, the following two connectives are usually defined in Łukasiewicz logic:

$$\varphi \& \psi = \neg(\varphi \to \neg \psi) \qquad \qquad \varphi \oplus \psi = \neg \varphi \to \psi.$$

An infinitary example

A prominent extension of Łukasiewicz logic, denoted as \mathbf{L}_{∞} , is obtained by adding the following infinitary rule:

$$\{\neg\varphi\rightarrow\varphi\ \&\ .^n.\ \&\ \varphi\mid n\geq 1\}\rhd\varphi$$

 \mathcal{L} -algebra: $A = \langle A, \langle c^A \mid c \in C_{\mathcal{L}} \rangle \rangle$, where $A \neq \emptyset$ (universe) and $c^A : A^n \to A$ for each $\langle c, n \rangle \in \mathcal{L}$.

Algebra of formulas: the algebra $Fm_{\mathcal{L}}$ with domain $Fm_{\mathcal{L}}$ and operations $c^{Fm_{\mathcal{L}}}$ for each $\langle c, n \rangle \in \mathcal{L}$ defined as:

$$c^{Fm_{\mathcal{L}}}(\varphi_1,\ldots,\varphi_n)=c(\varphi_1,\ldots,\varphi_n).$$

 $\mathit{Fm}_{\mathcal{L}}$ is the absolutely free algebra in language \mathcal{L} with

generators Var.

Homomorphism of algebras: a mapping $f: A \to B$ such that for every $\langle c, n \rangle \in \mathcal{L}$ and every $a_1, \ldots, a_n \in A$,

$$f(c^{\mathbf{A}}(a_1,\ldots,a_n))=c^{\mathbf{B}}(f(a_1),\ldots,f(a_n)).$$

Note that substitutions are exactly endomorphisms of $Fm_{\mathcal{L}}$.

Examples of algebras - 1

Boolean algebra: $A = \langle A, \wedge, \vee, \neg, \overline{0}, \overline{1} \rangle$, where $\langle A, \wedge, \vee, \overline{0}, \overline{1} \rangle$ is a bounded distributive lattice and for every $a \in A$:

$$a \wedge \neg a = \overline{0} \text{ and } a \vee \neg a = \overline{1}$$
 (complement)

Prototypical example: power set algebra of a set A, i.e. the structure $\langle P(A), \cap, \cup, -, \emptyset, A \rangle$, where for every $X \subseteq A$ we have $-X = A \setminus X$.

Stone's representation theorem: each Boolean algebra can be embedded into a Boolean algebra defined over the power set algebra of some set.

We denote the class of all Boolean algebras as $\mathbb{B}\mathbb{A}$.

Examples of algebras – 2

Heyting algebra: $A = \langle A, \wedge, \vee, \rightarrow, \overline{0}, \overline{1} \rangle$, where $A = \langle A, \wedge, \vee, \overline{0}, \overline{1} \rangle$ is a bounded distributive lattice and for every $a, b, c \in A$:

$$a \wedge b \leq c$$
 if, and only, if $a \leq b \rightarrow c$ (residuation)

where < is the canonical lattice order.

 \rightarrow is called the residuum of \wedge .

Pseudocomplement: $\neg a = a \rightarrow \overline{0}$ for $a \in A$.

We denote the class of all Heyting algebras as $\mathbb{H}\mathbb{A}$.

Each Boolean algebra can be seen as a Heyting algebra where the residuum is defined as $a \to b = \neg a \lor b$. Therefore, Boolean algebras turn out to be exactly the Heyting algebras in which \neg satisfies the complement condition.

Examples of algebras – 3

Gödel algebra or G-algebra: A Heyting algebra $A = \langle A, \wedge, \vee, \rightarrow, \overline{0}, \overline{1} \rangle$ such that for every $a, b \in A$:

$$(a \rightarrow b) \lor (b \rightarrow a) = \overline{1}.$$
 (prelinearity)

We denote the class of all G-algebras as \mathbb{G} .

$$\mathbb{B}\mathbb{A}\subset\mathbb{G}\subset\mathbb{H}\mathbb{A}$$

Examples of algebras - 4

MV-algebra: $\langle A, \oplus, \neg, \overline{0} \rangle$, where \oplus is a binary operation, \neg is a unary operation and $\overline{0}$ is a constant such that the following are satisfied for any $a, b, c \in A$:

- $a \oplus b = b \oplus a$
- $a \oplus \overline{0} = \overline{0}$

We denote the class of all MV-algebras as MV.

Lattice operations

Proposition

Let $(A, \oplus, \neg, \overline{0})$ be an MV-algebra. For each $a, b \in A$ we define:

- $a \& b = \neg(\neg a \oplus \neg b)$
- $\bullet \ a \to b = \neg (a \& \neg b)$
- $\overline{1} = \neg \overline{0}$
- \bullet $a \lor b = a \oplus (b \& \neg a)$
- $a \wedge b = a \& (b \oplus \neg a)$ Then:
 - \bigcirc $\langle A, \wedge, \vee, \overline{0}, \overline{1} \rangle$ is a bounded distributive lattice, and
 - 2 for each $a, b \in A$, we have: $a \& b \le c$ iff $a \le b \to c$.

Examples of algebras – 5

• the standard G-algebra: $[0,1]_G = \langle [0,1], \wedge, \vee, \rightarrow, 0, 1 \rangle$, where \wedge and \vee are the lattice operations given by the natural order in [0,1], and for each $a,b \in [0,1]$:

$$a \to b = \left\{ \begin{array}{ll} 1 & \text{if } a \le b, \\ b & \text{otherwise.} \end{array} \right.$$

• the standard MV-algebra: $[0,1]_{\mathbb{L}} = \langle [0,1], \oplus, \neg, 0 \rangle$, where for each $a,b \in [0,1]$, $a \oplus b = \min\{a+b,1\}$ and $\neg a = 1-a$. The lattice operations defined in the previous proposition coincide with the lattice operations given by the natural order in [0,1].

 \mathcal{L} -matrix: a pair $\mathbf{A} = \langle A, F \rangle$ where A is an \mathcal{L} -algebra called the algebraic reduct of \mathbf{A} , and F is a subset of A called the filter of \mathbf{A} . The elements of F are called designated elements of \mathbf{A} .

A matrix $\mathbf{A} = \langle \mathbf{A}, F \rangle$ is

- trivial if F = A.
- finite if A is finite.
- Lindenbaum if $A = Fm_{\mathcal{L}}$.

A-evaluation: a homomorphism from $Fm_{\mathcal{L}}$ to A, i.e. a mapping $e\colon Fm_{\mathcal{L}}\to A$, such that for each $\langle c,n\rangle\in\mathcal{L}$ and each n-tuple of formulas $\varphi_1,\ldots,\varphi_n$ we have:

$$e(c(\varphi_1,\ldots,\varphi_n))=c^{\mathbf{A}}(e(\varphi_1),\ldots,e(\varphi_n)).$$

Semantical consequence: A formula φ is a semantical consequence of a set Γ of formulas w.r.t. a class $\mathbb K$ of $\mathcal L$ -matrices if for each $\langle A,F\rangle\in\mathbb K$ and each A-evaluation e, we have $e(\varphi)\in F$ whenever $e[\Gamma]\subseteq F$; we denote it by $\Gamma\models_{\mathbb K}\varphi$.

Exercise 1

Let \mathbb{K} be a class of \mathcal{L} -matrices. Then $\models_{\mathbb{K}}$ is a logic in \mathcal{L} .

Lemma (Tabular logics)

Furthermore, if $\mathbb K$ is a finite class of finite matrices, then the logic $\models_{\mathbb K}$ is finitary.

L-matrix: Let L be a logic in $\mathcal L$ and $\mathbf A$ an $\mathcal L$ -matrix. We say that $\mathbf A$ is an L-matrix if $L\subseteq \models_{\mathbf A}$. We denote the class of L-matrices by $\mathbf{MOD}(L)$.

Lemma (Images and preimages of models)

Let L be a logic in $\mathcal L$ and a mapping $g: A \to B$ be a homomorphism of $\mathcal L$ -algebras A, B. Then:

- $\langle A, g^{-1}[G] \rangle \in \mathbf{MOD}(L)$, whenever $\langle B, G \rangle \in \mathbf{MOD}(L)$.
- $\langle \mathbf{B}, g[F] \rangle \in \mathbf{MOD}(L)$, whenever $\langle \mathbf{A}, F \rangle \in \mathbf{MOD}(L)$ and g is surjective and $g(x) \in g[F]$ implies $x \in F$.

Logical filter: Given a logic L in \mathcal{L} and an \mathcal{L} -algebra A, a subset $F \subseteq A$ is an L-filter if $\langle A, F \rangle \in \mathbf{MOD}(L)$. We denote by $\mathcal{F}_{lL}(A)$ the set of all L-filters over A.

 $\mathcal{F}_{\mathrm{L}}(A)$ is a closure system and can be given a lattice structure by defining for any $F,G\in\mathcal{F}_{\mathrm{L}}(A)$, $F\wedge G=F\cap G$ and $F\vee G=\mathrm{Fi}_{\mathrm{L}}^A(F\cup G)$.

Generated filter: Given a set $X \subseteq A$, the logical filter generated by X is $\mathrm{Fi}_{\mathrm{L}}^{A}(X) = \bigcap \{F \in \mathcal{F}_{\mathrm{L}}(A) \mid X \subseteq F\}.$

$$\mathcal{F}_{i_{\min}}(A) = \mathcal{P}(A)$$
 $\mathcal{F}_{i_{\min}}(A) = \{\emptyset, A\}$ $\mathcal{F}_{i_{\min}}(A) = \{A\}$

Examples of logical filters - 1

Exercise 2

- Let A be a Heyting algebra. Then $F \in \mathcal{F}l_{\mathrm{IL}}(A)$ iff F is a lattice filter on A.
- Let A be a G-algebra. Then $F \in \mathcal{F}_{G}(A)$ iff F is a lattice filter on A.
- Let A be a Boolean algebra. Then $F \in \mathcal{F}i_{\mathrm{CL}}(A)$ iff F is a lattice filter on A.
- Let A be an MV-algebra. Then $F \in \mathcal{F}_{l_{\mathbb{L}}}(A)$ iff F is a lattice filter on A and for each $x, y \in A$ such that $x, x \to y \in F$ we have $y \in F$.

Examples of logical filters - 2

$$\mathbf{A} = \langle [0,1]_G, (0,1] \rangle \in \mathbf{MOD}(CL).$$

Indeed, it is a model of IL and it is easy to check that:

•
$$\models_{\mathbf{A}} ((\varphi \to \psi) \to \psi) \to ((\psi \to \varphi) \to \varphi)$$

$$\bullet \models_{\mathbf{A}} ((\varphi \to \psi) \to \chi) \to (((\psi \to \varphi) \to \chi) \to \chi)$$

Examples of logical filters – 3

Now we can show that \mathbf{t}_{∞} is not finitary (hence, a proper extension of Łukasiewicz logic).

 $\mathbf{M}_{\mathtt{L}} = \langle [0,1]_{\mathtt{L}}, \{1\} \rangle \in \mathbf{MOD}(\mathtt{L}_{\infty}).$ However, for each positive $k \in \mathsf{N}$

$$\{\neg \varphi \to \varphi^n \mid 1 \le n < k\} \not\models_{\mathbf{M}_{\mathbf{L}}} \varphi,$$

where by φ^n we denote $\varphi \& .$ ⁿ. $\& \varphi$. Indeed, it suffices to take the evaluation $e(\varphi) = \frac{k}{k+1}$ and note that $e(\varphi)^n = \frac{k-n}{k+1} \ge \frac{1}{k+1} = e(\neg \varphi)$ for n < k

Examples of logical filters – 4

A model of \mathcal{L} which is not a model of \mathcal{L}_{∞} .

 $C = \langle C, \oplus, \neg, \overline{0} \rangle$ (Chang algebra):

$$\bullet \ C = \{ \langle 0, i \rangle \mid i \in \mathsf{N} \} \cup \{ \langle 1, -i \rangle \mid i \in \mathsf{N} \}$$

 \bullet $\overline{0} = \langle 0, 0 \rangle$

Now we consider the matrix $C = \langle C, \{\langle 1, 0 \rangle \} \rangle$ and show that

$$\{\neg \varphi \to \varphi^n \mid n \ge 1\} \not\models_{\mathbf{C}} \varphi.$$

Indeed, $e(\varphi) = \langle 1, -1 \rangle$, and compute by induction that $\langle 1, -1 \rangle^n = \langle 1, -n \rangle$ and so $e(\neg \varphi \rightarrow \varphi^n) = \langle 1, -1 \rangle \oplus \langle 1, -n \rangle = \langle 1, 0 \rangle$.

Examples of logical filters – 5

For each $n \geq 2$, take the subalgebra MV_n of $[0,1]_{\mathbb{L}}$ with the n-element domain $\{0,\frac{1}{n-1},\ldots,1\}$ and the matrix $\mathbf{L}_n = \langle MV_n,\{1\}\rangle$.

 $\models_{\mathbf{L}_n}$ is a finitary logic (by the lemma on tabular logics).

 $\mathbf{L}_n \in \mathbf{MOD}(\mathbf{L})$ (by the lemma on preimages of models).

 $\mathbf{L}_n \in \mathbf{MOD}(\mathtt{L}_\infty)$ (checking the semantical validity of the infinitary rule).

$$\mathcal{L}_{\infty} \subsetneq \models_{\{\mathbf{L}_n \mid n \geq 2\}}$$

The rule $\{(p_i \to p_{i+1})^{i(i+1)} \to q \mid i > 0\} \rhd q$ can be checked to be sound in each \mathbf{L}_n , while the evaluation e(q) = 0 and $e(p_i) = \frac{1}{i}$ shows that it is not derivable in \mathbf{L}_{∞} .

Examples of logical filters - 6

Exercise 3

The logic BCI: By M we denote the $\mathcal{L}_{\rightarrow}$ -algebra with domain $\{\bot, \top, t, f\}$ and:

Check that

$$\mathcal{F}i_{\text{BCI}}(M) = \{\{t, \top\}, \{t, f, \top\}, M\}.$$

The first completeness theorem

Proposition

For any logic L in a language \mathcal{L} , $\mathcal{F}_{l_L}(\mathbf{Fm}_{\mathcal{L}}) = \mathrm{Th}(L)$.

Theorem

Let L be a logic. Then for each set Γ of formulas and each formula φ the following holds: $\Gamma \vdash_{\mathbf{L}} \varphi$ iff $\Gamma \models_{\mathbf{MOD}(\mathbf{L})} \varphi$.

Outline

- Introduction
- A general algebraic theory of logics
- Weakly implicative logics
- Substructural and semilinear logics

Completeness theorem for classical logic

- Suppose that $T \in \text{Th}(\text{CL})$ and $\varphi \notin T$ ($T \not\vdash_{\text{CL}} \varphi$). We want to show that $T \not\models \varphi$ in some meaningful semantics.
- $T \not\models_{\langle Fm_{\mathcal{L}}, T \rangle} \varphi$.

1st completeness theorem

- $\langle \alpha, \beta \rangle \in \Omega(T)$ iff $\alpha \leftrightarrow \beta \in T$ (congruence relation on $Fm_{\mathcal{L}}$ compatible with T: if $\alpha \in T$ and $\langle \alpha, \beta \rangle \in \Omega(T)$, then $\beta \in T$).
- Lindenbaum-Tarski algebra: $Fm_{\mathcal{L}}/\Omega(T)$ is a Boolean algebra and $T \not\models_{\langle Fm_{\mathcal{L}}/\Omega(T), T/\Omega(T) \rangle} \varphi$.

2nd completeness theorem

- Lindenbaum Lemma: If $\varphi \notin T$, then there is a maximal consistent $T' \in \operatorname{Th}(\operatorname{CL})$ such that $T \subseteq T'$ and $\varphi \notin T'$.
- $Fm_{\mathcal{L}}/\Omega(T')\cong 2$ (subdirectly irreducible Boolean algebra) and $T\not\models_{\langle 2,\{1\}\rangle} \varphi.$ 3rd completeness theorem

Weakly implicative logics

Definition

A logic L in a language \mathcal{L} is weakly implicative if there is a binary connective \rightarrow (primitive or definable) such that:

$$\begin{split} (\mathsf{R}) & \vdash_{\mathsf{L}} \varphi \to \varphi \\ (\mathsf{MP}) & \varphi, \varphi \to \psi \vdash_{\mathsf{L}} \psi \\ (\mathsf{T}) & \varphi \to \psi, \psi \to \chi \vdash_{\mathsf{L}} \varphi \to \chi \\ (\mathsf{sCng}) & \varphi \to \psi, \psi \to \varphi \vdash_{\mathsf{L}} c(\chi_1, \dots, \chi_i, \varphi, \dots, \chi_n) \to \\ & c(\chi_1, \dots, \chi_i, \psi, \dots, \chi_n) \\ & \text{for each } \langle c, n \rangle \in \mathcal{L} \text{ and each } 0 \leq i < n. \end{split}$$

Examples of (non-)weakly implicative logics – 1

- Min and AInc are not weakly implicative because they have no theorems (and hence no connective can satisfy the reflexivity requirement).
- Inc is weakly implicative (any binary connective works).
- Since prefixing is a theorem of BCI, in particular we obtain

$$\varphi \to \psi, \psi \to \varphi \vdash_{\mathsf{BCI}} (\varphi \to \chi) \to (\psi \to \chi)$$

$$\varphi \to \psi, \psi \to \varphi \vdash_{\mathsf{BCI}} (\chi \to \varphi) \to (\chi \to \psi)$$

Thus all extensions of BCI are weakly implicative.

Examples of (non-)weakly implicative logics – 2

The axiomatic expansions of BCK we have seen are weakly implicative.

It is enough to show:

$$\begin{split} \varphi &\rightarrow \psi, \psi \rightarrow \varphi \vdash \varphi \lor \chi \rightarrow \psi \lor \chi \\ \varphi &\rightarrow \psi, \psi \rightarrow \varphi \vdash \varphi \land \chi \rightarrow \psi \land \chi \\ \varphi &\rightarrow \psi, \psi \rightarrow \varphi \vdash \chi \lor \varphi \rightarrow \chi \lor \psi \\ \varphi &\rightarrow \psi, \psi \rightarrow \varphi \vdash \chi \land \varphi \rightarrow \chi \land \psi \end{split}$$

Observe that the equivalence connective \equiv (defined as $(\varphi \to \psi) \land (\psi \to \varphi)$) is also a weak implication, though it differs substantially from \to in logical behavior, for instance we have $\varphi \vdash \psi \to \varphi$ but not $\varphi \vdash \psi \equiv \varphi$.

Modal logics - 1

 $\mathcal{L}_{\square} \mathpunct{:} \mathcal{L}_{CL}$ with an additional unary connective $\square.$

$$\begin{array}{ll} (\mathbf{K}_{\square}) & \square(\varphi \to \psi) \to (\square\varphi \to \square\psi) \\ (\mathbf{T}_{\square}) & \square\varphi \to \varphi \\ (\mathbf{4}_{\square}) & \square\varphi \to \square\square\varphi \\ (\mathbf{Nec}_{\square}) & \varphi \rhd \square\varphi \end{array}$$

Global modal logics:

- K is the expansion of CL by (K_{\square}) and (Nec_{\square}) .
- T: axiomatic extension of K by (T_{\square})
- K4: axiomatic extension of K by (4_□)
- S4: axiomatic extension of T by (4_{\square})

Modal logics - 2

Local modal logics:

If L is a global modal logic, its local variant can be defined in two equivalent ways:

- as the axiomatic expansion of CL by all the theorems of L,
- ② by taking as axioms all the formulas \Box . n . \Box φ for each $n \geq 0$ and each axiom φ of L and *modus ponens* as the only inference rule.

Examples of (non-)weakly implicative logics – 3

- Global modal logics are weakly implicative (using the axiom (K_{\square}) and the rule of necessitation).
- Local modal logics are not weakly implicative. Indeed, let L be any such logic and assume that $\overline{1} \to \varphi, \varphi \to \overline{1} \vdash_L \Box \overline{1} \to \Box \varphi$. Since L expands CL, we know that

$$\vdash_{\mathsf{L}} \varphi \to \overline{1}$$
 $\varphi \vdash_{\mathsf{L}} \overline{1} \to \varphi$ $\vdash_{\mathsf{L}} \overline{1}.$

Thus also $\vdash_L \Box \overline{1}$ and so $\varphi \vdash_L \Box \varphi$, i.e., L is equal to its global variant, which is known not be the case.

Congruence Property – 1

Conventions

Unless said otherwise, L is a weakly implicative in a language $\mathcal L$ with an implication $\to.$ We write:

- $\varphi \leftrightarrow \psi$ instead of $\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$
- $\Gamma \vdash \Delta$ whenever $\Gamma \vdash \chi$ for each $\chi \in \Delta$
- $\Gamma \dashv \vdash \Delta$ whenever $\Gamma \vdash \Delta$ and $\Delta \vdash \Gamma$.

Theorem

Let φ, ψ, χ be formulas. Then:

- $\bullet \vdash_{\mathsf{L}} \varphi \leftrightarrow \varphi$
- $\bullet \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} \psi \leftrightarrow \varphi$
- $\bullet \varphi \leftrightarrow \delta, \delta \leftrightarrow \psi \vdash_{\mathbf{L}} \varphi \leftrightarrow \psi$
- $\varphi \leftrightarrow \psi \vdash_{\mathbf{L}} \chi \leftrightarrow \hat{\chi}$, where $\hat{\chi}$ is obtained from χ by replacing some occurrences of φ in χ by ψ .

Congruence Property – 2

Corollary

Let \to' be a connective satisfying (R), (MP), (T), (sCng). Then

$$\varphi \leftrightarrow \psi \dashv \vdash_{\mathbf{L}} \varphi \leftrightarrow' \psi.$$

Let us fix a weakly implicative logic L.

Definition

Let $A = \langle A, F \rangle$ be an L-matrix. We define:

• the matrix preorder \leq_A of A as

$$a \leq_{\mathbf{A}} b$$
 iff $a \to^{\mathbf{A}} b \in F$

• the Leibniz congruence $\Omega_A(F)$ of **A** as

$$\langle a,b \rangle \in \Omega_{\mathbf{A}}(F)$$
 iff $a \leq_{\mathbf{A}} b$ and $b \leq_{\mathbf{A}} a$.

A congruence θ of A is logical in a matrix $\langle A, F \rangle$ if for each $a, b \in A$ if $a \in F$ and $\langle a, b \rangle \in \theta$, then $b \in F$.

Theorem

Let $A = \langle A, F \rangle$ be an L-matrix. Then:

- $\mathbf{0} \leq_{\mathbf{A}}$ is a preorder.
- **2** $\Omega_A(F)$ is the largest logical congruence of $\langle A, F \rangle$.
- **③** $\langle a,b\rangle$ ∈ $\Omega_A(F)$ iff for each χ ∈ $Fm_{\mathcal{L}}$ and each A-evaluation e:

$$e[p:a](\chi) \in F$$
 iff $e[p:b](\chi) \in F$.

Theorem

Let $A = \langle A, F \rangle$ be an L-matrix. Then:

- $\mathbf{0} \leq_{\mathbf{A}}$ is a preorder.
- **2** $\Omega_A(F)$ is the largest logical congruence of $\langle A, F \rangle$.
- **③** $\langle a,b\rangle$ ∈ $\Omega_A(F)$ iff for each χ ∈ $Fm_{\mathcal{L}}$ and each A -evaluation e:

$$e[p:a](\chi) \in F$$
 iff $e[p:b](\chi) \in F$.

Proof.

1. Take A-evaluation e such that e(p)=a, e(q)=b, and e(r)=c. Recall that in L we have: $\vdash_{\mathsf{L}} p \to p$ and $p \to q, q \to r \vdash_{\mathsf{L}} p \to r$. As $\mathbf{A} = \mathbf{MOD}(\mathsf{L})$ we have: $e(p \to p) \in F$, i.e., $a \leq_{\mathbf{A}} a$ and if $e(p \to q), e(q \to r) \in F$, then $e(p \to r) \in F$ i.e., if $a \leq_{\mathbf{A}} b$ and $b \leq_{\mathbf{A}} c$, then $a \leq_{\mathbf{A}} c$.

Theorem

Let $A = \langle A, F \rangle$ be an L-matrix. Then:

- $\mathbf{0} \leq_{\mathbf{A}}$ is a preorder.
- ② $\Omega_A(F)$ is the largest logical congruence of $\langle A, F \rangle$.
- **③** $\langle a,b\rangle$ ∈ $\Omega_A(F)$ iff for each χ ∈ $Fm_{\mathcal{L}}$ and each A-evaluation e:

$$e[p:a](\chi) \in F$$
 iff $e[p:b](\chi) \in F$.

Proof.

2. $\Omega_A(F)$ is obviously an equivalence relation. It is a congruence due to (sCng) and logical due to (MP).

Take a logical congruence θ and $\langle a,b\rangle\in\theta$. Since $\langle a,a\rangle\in\theta$, we have $\langle a\to^A a,a\to^A b\rangle\in\theta$. As $a\to^A a\in F$ and θ is logical we get $a\to^A b\in F$, i.e., $a\leq_{\mathbf{A}} b$. The proof of $b\leq_{\mathbf{A}} a$ is analogous.

Theorem

Let $A = \langle A, F \rangle$ be an L-matrix. Then:

- $\mathbf{0} \leq_{\mathbf{A}}$ is a preorder.
- ② $\Omega_A(F)$ is the largest logical congruence of $\langle A, F \rangle$.
- **③** $\langle a,b\rangle$ ∈ $\Omega_A(F)$ iff for each χ ∈ $Fm_{\mathcal{L}}$ and each A-evaluation e:

$$e[p:a](\chi) \in F$$
 iff $e[p:b](\chi) \in F$.

Proof.

3. One direction is a corollary of the congruence property and (MP). The converse one: set $\chi = p \to q$ and e(q) = b. Then, $a \to^A b \in F$ iff $b \to^A b \in F$, thus $a \leq_A b$. The proof of $b \leq_A a$ is analogous (using e(q) = a).

Algebraic counterpart

Definition

An L-matrix $A = \langle A, F \rangle$ is reduced, $A \in \mathbf{MOD}^*(L)$ in symbols, if $\Omega_A(F)$ is the identity relation Id_A .

An algebra A is L-algebra, $A \in ALG^*(L)$ in symbols, if there is a set $F \subseteq A$ such that $\langle A, F \rangle \in MOD^*(L)$.

Note that $\Omega_A(A) = A^2$. Thus from $\mathcal{F}_{Inc}(A) = \{A\}$ we obtain:

 $A \in \mathbf{ALG}^*(Inc)$ iff A is a singleton

Examples: classical logic CL and logic BCI

Exercise 4

Classical logic: prove that for any Boolean algebra *A*:

$$\Omega_A(\{1\}) = \mathrm{Id}_A$$
 i.e., $A \in ALG^*(CL)$.

On the other hand, show that:

$$\Omega_4(\{a,1\}) = \mathrm{Id}_A \cup \{\langle 1,a\rangle, \langle 0, \neg a\rangle\}$$
 i.e. $\langle 4, \{a,1\}\rangle \notin \mathbf{MOD}^*(\mathrm{CL})$.

BCI: recall the algebra *M* defined via:

Show that:

$$\Omega_{\mathbf{M}}(\{t, \top\}) = \Omega_{\mathbf{M}}(\{t, f, \top\}) = \mathrm{Id}_{\mathbf{M}}$$
 i.e. $\mathbf{M} \in \mathbf{ALG}^*(\mathrm{BCI})$.

Factorizing matrices - 1

Let us take $A = \langle A, F \rangle \in \mathbf{MOD}(L)$. We write:

- A^* for $A/\Omega_A(F)$
- $[\cdot]_F$ for the canonical epimorphism of A onto A^* defined as:

$$[a]_F = \{b \in A \mid \langle a, b \rangle \in \Omega_A(F)\}$$

• \mathbf{A}^* for $\langle \mathbf{A}^*, [F]_F \rangle$.

Lemma

Let $A = \langle A, F \rangle \in \mathbf{MOD}(L)$ and $a, b \in A$. Then:

- $2 A^* \in MOD(L).$
- $\mathbf{4}^* \in \mathbf{MOD}^*(L).$

Factorizing matrices - 2

Proof.

- One direction is trivial. Conversely: $[a]_F \in [F]_F$ implies that $[a]_F = [b]_F$ for some $b \in F$; thus $\langle a,b \rangle \in \Omega_A(F)$ and, since $\Omega_A(F)$ is a logical congruence, we obtain $a \in F$.
- **2** Recall that the second claim of Lemma 1.12 says that for a surjective $g: A \to B$ and $F \in \mathcal{F}_{L}(A)$ we get $g[F] \in \mathcal{F}_{L}(B)$, whenever $g(x) \in g[F]$ implies $x \in F$.
- 4 Assume that $\langle [a]_F, [b]_F \rangle \in \Omega_{A^*}([F]_F)$, i.e., $[a]_F \leq_{\mathbf{A}^*} [b]_F$ and $[b]_F \leq_{\mathbf{A}^*} [a]_F$. Therefore $a \to^{\mathbf{A}} b \in F$ and $b \to^{\mathbf{A}} a \in F$, i.e., $\langle a,b \rangle \in \Omega_A(F)$. Thus $[a]_F = [b]_F$.

Lindenbaum-Tarski matrix

Let L be a weakly implicative logic in \mathcal{L} and $T \in Th(L)$. For every formula φ , we define the set

$$[\varphi]_T = \{ \psi \in Fm_{\mathcal{L}} \mid \varphi \leftrightarrow \psi \subseteq T \}.$$

The Lindenbaum–Tarski matrix with respect to L and T, LindT $_T$, has the filter $\{[\varphi]_T \mid \varphi \in T\}$ and algebraic reduct with the domain $\{[\varphi]_T \mid \varphi \in Fm_{\mathcal{L}}\}$ and operations:

$$c^{\mathbf{LindT}_T}([\varphi_1]_T,\ldots,[\varphi_n]_T)=[c(\varphi_1,\ldots,\varphi_n)]_T$$

Clearly, for every $T \in Th(L)$ we have:

$$\mathbf{LindT}_T = \langle \mathbf{Fm}_{\mathcal{L}}, T \rangle^*.$$

The second completeness theorem

Theorem

Let L be a weakly implicative logic. Then for any set Γ of formulas and any formula φ the following holds:

$$\Gamma \vdash_{L} \varphi \quad \textit{iff} \quad \Gamma \models_{\textbf{MOD}^{*}(L)} \varphi.$$

The second completeness theorem

Theorem

Let L be a weakly implicative logic. Then for any set Γ of formulas and any formula φ the following holds:

$$\Gamma \vdash_{L} \varphi \quad \textit{iff} \quad \Gamma \models_{\textbf{MOD}^{*}(L)} \varphi.$$

Proof.

Using just the soundness part of the first completeness theorem it remains to prove:

$$\Gamma \models_{\mathbf{MOD}^*(L)} \varphi \quad \text{implies} \quad \Gamma \vdash_L \varphi.$$

Take the Lindenbaum–Tarski matrix $\mathbf{LindT}_{\mathrm{Th}_{L}(\Gamma)} = \langle \mathbf{\textit{Fm}}_{\mathcal{L}}, \mathrm{Th}_{L}(\Gamma) \rangle^{*}$ and evaluation $e(\psi) = [\psi]_{\mathrm{Th}_{L}(\Gamma)}$. As clearly $e[\Gamma] \subseteq e[\mathrm{Th}_{L}(\Gamma)] = [\mathrm{Th}_{L}(\Gamma)]_{\mathrm{Th}_{L}(\Gamma)}$, then, as $\mathbf{LindT}_{\mathrm{Th}_{L}(\Gamma)}$ is an L-model, we have: $e(\varphi) = [\varphi]_{\mathrm{Th}_{L}(\Gamma)} \in [\mathrm{Th}_{L}(\Gamma)]_{\mathrm{Th}_{L}(\Gamma)}$, and so $\varphi \in \mathrm{Th}_{L}(\Gamma)$ i.e., $\Gamma \vdash_{L} \varphi$.

Completeness theorem for classical logic

- Suppose that $T \in \text{Th}(\text{CL})$ and $\varphi \notin T$ ($T \not\vdash_{\text{CL}} \varphi$). We want to show that $T \not\models \varphi$ in some meaningful semantics.
- $T \not\models_{\langle Fm_{\mathcal{L}}, T \rangle} \varphi$.

1st completeness theorem

- $\langle \alpha, \beta \rangle \in \Omega(T)$ iff $\alpha \leftrightarrow \beta \in T$ (congruence relation on $Fm_{\mathcal{L}}$ compatible with T: if $\alpha \in T$ and $\langle \alpha, \beta \rangle \in \Omega(T)$, then $\beta \in T$).
- Lindenbaum-Tarski algebra: $Fm_{\mathcal{L}}/\Omega(T)$ is a Boolean algebra and $T \not\models_{\langle Fm_{\mathcal{L}}/\Omega(T), T/\Omega(T) \rangle} \varphi$.

2nd completeness theorem

- Lindenbaum Lemma: If $\varphi \notin T$, then there is a maximal consistent $T' \in \operatorname{Th}(\operatorname{CL})$ such that $T \subseteq T'$ and $\varphi \notin T'$.
- $Fm_{\mathcal{L}}/\Omega(T')\cong 2$ (subdirectly irreducible Boolean algebra) and $T\not\models_{\langle 2,\{1\}\rangle} \varphi.$ 3rd completeness theorem

Closure systems and closure operators – 1

Closure system over a set A: a collection of subsets $\mathcal{C} \subseteq \mathcal{P}(A)$ closed under arbitrary intersections and such that $A \in \mathcal{C}$. The elements of \mathcal{C} are called closed sets.

Closure operator over a set A: a mapping $C: \mathcal{P}(A) \to \mathcal{P}(A)$ such that for every $X, Y \subseteq A$:

- ② C(X) = C(C(X)), and
- \bullet if $X \subseteq Y$, then $C(X) \subseteq C(Y)$.

Exercise 5

If *C* is a closure operator, $\{X \subseteq A \mid C(X) = X\}$ is a closure system.

If \mathcal{C} is closure system, $C(X) = \bigcap \{Y \in \mathcal{C} \mid X \subseteq Y\}$ is a closure operator.

Closure systems and closure operators - 2

A base of a closure system $\mathcal C$ over A is any $\mathcal B\subseteq\mathcal C$ satisfying one of the following equivalent conditions:

- $oldsymbol{0}$ \mathcal{C} is the coarsest closure system containing \mathcal{B} .
- ② For every $T \in \mathcal{C}$, there is a $\mathcal{D} \subseteq \mathcal{B}$ such that $T = \bigcap \mathcal{D}$.
- **3** For every $T \in \mathcal{C}$, $T = \bigcap \{B \in \mathcal{B} \mid T \subseteq B\}$.
- For every $Y \in \mathcal{C}$ and $a \in A \setminus Y$ there is $Z \in \mathcal{B}$ such that $Y \subseteq Z$ and $a \notin Z$.

Exercise 6

Show that the four definitions are equivalent.

An element X of a closure system $\mathcal C$ over A is called (finitely) \cap -irreducible if for each (finite non-empty) set $\mathcal Y\subseteq \mathcal C$ such that $X=\bigcap_{Y\in \mathcal Y} Y$, there is $Y\in \mathcal Y$ such that X=Y.

Abstract Lindenbaum Lemma

An element X of a closure system $\mathcal C$ over A is called maximal w.r.t. an element a if it is a maximal element of the set $\{Y \in \mathcal C \mid a \notin Y\}$ w.r.t. the order given by inclusion.

Proposition

Let C be a closure system over a set A and $T \in C$. Then, T is maximal w.r.t. an element if, and only if, T is \cap -irreducible.

A closure operator C is finitary if for every $X \subseteq A$, $C(X) = \bigcup \{C(Y) \mid Y \subseteq X \text{ and } Y \text{ is finite}\}.$

Lemma

Let C be a finitary closure operator and $\mathcal C$ its corresponding closure system. If $T \in \mathcal C$ and $a \notin T$, then there is $T' \in \mathcal C$ such that $T \subseteq T'$ and T' is maximal with respect to a. \cap -irreducible closed sets form a base.

Operations on matrices

 $\langle A,F \rangle$: first-order structure in the equality-free predicate language with function symbols from $\mathcal L$ and a unique unary predicate symbol interpreted by F.

Submatrix: $\langle A, F \rangle \subseteq \langle B, G \rangle$ if $A \subseteq B$ and $F = A \cap G$. Operator: S. Homomorphic image: A homomorphism from $\langle A, F \rangle$ to $\langle B, G \rangle$ is a homomorphism of algebras $h \colon A \to B$ such that $h[F] \subseteq G$. Direct product: $\langle A, F \rangle = \prod_{i \in I} \{ \langle A_i, F_i \rangle \mid i \in I \}$ if $A = \prod_{i \in I} A_i$, $f^A(a_1, \ldots, a_n)(i) = f^{A_i}(a_1(i), \ldots, a_n(i))$. $F = \prod_{i \in I} F_i$. $\pi_j : A \twoheadrightarrow A_j$. Operator: **P**.

Exercise 7

Let L be a weakly implicative logic. Then:

- \bigcirc **SP**(**MOD**(L)) \subseteq **MOD**(L).
- **2** $SP(MOD^*(L)) \subseteq MOD^*(L)$.

Subdirect products and subdirect irreducibility

A is representable as a subdirect product of $\{\mathbf{A}_i \mid i \in I\}$ if there is an embedding α from **A** into $\prod_{i \in I} \mathbf{A}_i$ s.t. for every $i \in I$, $\pi_i \circ \alpha$ is a surjective homomorphism.

Operator $P_{SD}(\mathbb{K})$.

 $\mathbf{A} \in \mathbb{K}$ is (finitely) subdirectly irreducible relative to \mathbb{K} if for every (finite non-empty) subdirect representation α of \mathbf{A} with a family $\{\mathbf{A}_i \mid i \in I\} \subseteq \mathbb{K}$ there is $i \in I$ such that $\pi_i \circ \alpha$ is an isomorphism.

The class of all (finitely) subdirectly irreducible matrices relative to $\mathbb K$ is denoted as $\mathbb K_{R(F)SI}.$

 $\mathbb{K}_{RSI} \subseteq \mathbb{K}_{RFSI}$.

Characterization of RSI and RFSI reduced models

Theorem

Given a weakly implicative logic L and $A = \langle A, F \rangle \in \mathbf{MOD}^*(L)$, we have:

- **1 A** \in **MOD***(L)_{RSI} iff F is \cap -irreducible in $\mathcal{F}i_L(A)$.
- **2** $A \in MOD^*(L)_{RFSL}$ iff F is finitely \cap -irreducible in $\mathcal{F}_{l_L}(A)$.

Subdirect representation

Theorem

If L is a finitary weakly implicative logic, then

$$\label{eq:model} \textbf{MOD}^*(\textbf{L}) = \textbf{P}_{SD}(\textbf{MOD}^*(\textbf{L})_{RSI}),$$

in particular every matrix in $\mathbf{MOD}^*(L)$ is representable as a subdirect product of matrices in $\mathbf{MOD}^*(L)_{RSI}$.

The third completeness theorem

Theorem

Let L be a finitary weakly implicative logic. Then for any set Γ of formulas and any formula φ the following holds:

$$\Gamma \vdash_{\mathsf{L}} \varphi \quad \textit{iff} \quad \Gamma \models_{\mathbf{MOD}^*(\mathsf{L})_{\mathsf{RSI}}} \varphi.$$

Outline

- Introduction
- A general algebraic theory of logics
- Weakly implicative logics
- 4 Substructural and semilinear logics

Non-associative residuated lattices [Galatos-Ono. APAL 2010]

A pointed residuated lattice-ordered groupoid with unit A is algebra of a type $\mathcal{L}_{SL} = \{\&, \setminus, /, \wedge, \vee, \overline{0}, \overline{1}\}$:

- $\langle A, \wedge, \vee \rangle$ is a lattice
- $\langle A, \&, \overline{1} \rangle$ is a groupoid with unit $\overline{1}$
- for each $x, y, z \in A$:

$$x \& y \le z$$
 IFF $x \le z / y$ IFF $y \le x \setminus z$

For simplicity we will speak about SL-algebras

SL-algebras form a variety, we will denote it as SL.

Classes of residuated structures

Any quasivariety of SL-algebras, possibly with additional operators, will be called a class of residuated structures.

Classes of residuated structures

Any quasivariety of SL-algebras, possibly with additional operators, will be called a class of residuated structures.

- Subvarieties of \mathbb{SL} , where & is associative, commutative, idempotent, divisible, etc.
- Integral SL-algebras: those where $\overline{1}$ is a top element of A
- Semilinear classes (those generated by their linearly ordered members)
- G-algebras (associative, commutative, integral, semilinear SL-algebras where $x \& y = x \land y$)
- MV-algebras (associative, commutative, integral, divisible, semilinear SL-algebras where $(x \to \overline{0}) \to \overline{0} = x$)
- Boolean algebras (idempotent MV-algebras)

Plus any of these with additional operators ...

The logic of SL-algebras

The relation \vdash_{SL} defined as:

$$\Gamma \vdash_{\mathsf{SL}} \varphi \quad \mathsf{iff} \quad \{\psi \land \overline{1} \approx \overline{1} \mid \psi \in \Gamma\} \models_{\mathbb{SL}} \varphi \land \overline{1} \approx \overline{1}$$

is a logic.

The logic of SL-algebras

The relation \vdash_{SL} defined as:

$$\Gamma \vdash_{\operatorname{SL}} \varphi \quad \text{iff} \quad \{\psi \geq \overline{1} \mid \psi \in \Gamma\} \models_{\operatorname{\mathbb{SL}}} \varphi \geq \overline{1}$$

is a logic.

Axiomatization SL for SL [Galatos-Ono. APAL, 2010]

Axioms:

$$\begin{array}{lll} \varphi \wedge \psi \setminus \varphi & \varphi \wedge \psi \setminus \psi & (\chi \setminus \varphi) \wedge (\chi \setminus \psi) \setminus (\chi \setminus \varphi \wedge \psi) \\ \varphi \setminus \varphi \vee \psi & \psi \setminus \varphi \vee \psi & (\varphi \setminus \chi) \wedge (\psi \setminus \chi) \setminus (\varphi \vee \psi \setminus \chi) \\ \varphi \setminus ((\psi / \varphi) \setminus \psi) & \psi \setminus (\varphi \setminus \varphi \& \psi) & (\chi / \varphi) \wedge (\chi / \psi) \setminus (\chi / \varphi \vee \psi) \\ \overline{1} & \overline{1} \setminus (\varphi \setminus \varphi) & \varphi \setminus (\overline{1} \setminus \varphi) \end{array}$$

Rules:

A formal definition of substructural logics

We write
$$\begin{array}{ccc} \varphi \to \psi & \text{instead of} & \varphi \setminus \psi \\ \varphi \leftrightarrow \psi & \text{instead of} & (\varphi \to \psi) \wedge (\psi \to \varphi) \end{array}$$

Definition

A finitary logic L in a language \mathcal{L} is a substructural logic if

- \bullet $\mathcal{L} \supset \mathcal{L}_{\mathrm{SL}}$
- If $T \vdash_{SL} \varphi$, then $T \vdash_{L} \varphi$
- for each n, i < n, and each n-ary connective $c \in \mathcal{L} \setminus \mathcal{L}_{SL}$ holds:

$$\varphi \leftrightarrow \psi \vdash_{\mathsf{L}} c(\chi_1, \dots, \chi_i, \varphi, \dots, \chi_n) \leftrightarrow c(\chi_1, \dots, \chi_i, \psi, \dots, \chi_n)$$

The last condition can be proven for all connectives of \mathcal{L}_{SL} . Hence, all substructural logics are weakly implicative.

From substructural logics to classes of residuated structures

Theorem

Let L be a substructural logic. We say that an \mathcal{L} -algebra A is an L-algebra, whenever

- \bullet its \mathcal{L}_{SL} -reduct is an SL-algebra and
- ② $T \vdash_{\mathsf{L}} \varphi$ implies that $\{\psi \geq \overline{1} \mid \psi \in T\} \models_{\mathsf{A}} \varphi \geq \overline{1}$

The class of all L-algebras, denoted as \mathbb{Q}_L , is a class of residuated structures and

$$T \vdash_{\mathsf{L}} \varphi \quad \textit{iff} \quad \{\psi \geq \overline{1} \mid \psi \in T\} \models_{\mathbb{Q}_{\mathsf{L}}} \varphi \geq \overline{1}$$

From substructural logics to classes of residuated structures and back

Theorem

Let $\mathbb Q$ be a class of residuated structures of type $\mathcal L\supseteq\mathcal L_{SL}$. Then the relation $L_\mathbb Q$ defined as:

$$T \vdash_{\mathsf{L}_{\mathbb{D}}} \varphi \quad \textit{iff} \quad \{\psi \geq \overline{1} \mid \psi \in T\} \models_{\mathbb{Q}} \varphi \geq \overline{1}$$

is a substructural logic. Moreover:

$$E \models_{\mathbb{Q}} \alpha \approx \beta \quad \textit{iff} \quad \{\varphi \leftrightarrow \psi \mid \varphi \approx \psi \in E\} \vdash_{\mathbf{L}_{\mathbb{D}}} \alpha \leftrightarrow \beta$$

It gets even better

Theorem

The operators \mathbb{Q}_{\star} and L_{\star} are dual-lattice isomorphisms between the lattice of substructural logics in language \mathcal{L} and the lattice of subquasivarieties of SL-algebras with operators $\mathcal{L} \setminus \mathcal{L}_{SL}$.

Examples of substructural logics

- CL, IL, G, Ł, etc.
- expansions by additional connectives, e.g. (classical) modalities, exponentials in linear logic and Baaz's Delta in fuzzy logics

Examples of substructural logics

- CL, IL, G, Ł, etc.
- expansions by additional connectives, e.g. (classical) modalities, exponentials in linear logic and Baaz's Delta in fuzzy logics

Special axioms:	usual name	S	axioms
	associativity	a	$(\varphi \& \psi) \& \chi \leftrightarrow \varphi \& (\psi \& \chi)$
	exchange		$\varphi \& \psi \to \psi \& \varphi$
	contraction	c	$\varphi \to \varphi \& \varphi$
	weakening	w	$arphi \ \& \ \psi ightarrow \psi$ and $\overline{0} ightarrow arphi$

Logic given by these axioms; let $X \subseteq \{e, c, w\}$ we define logics

- SL_X axiomatized by adding axioms from X of those of SL
- FL_X axiomatized by adding associativity to SL_X

Proof by cases

For classical or intuitionistic logic we have:

$$\frac{\Gamma, \varphi \vdash_{\mathsf{L}} \chi}{\Gamma \cup \{\varphi \lor \psi\} \vdash_{\mathsf{L}} \chi}$$

Proof by cases

For classical or intuitionistic logic we have:

$$\frac{\Gamma, \varphi \vdash_{\mathsf{L}} \chi}{\Gamma \cup \{\varphi \lor \psi\} \vdash_{\mathsf{L}} \chi}$$

But in FL_e it would entail $\varphi \lor \psi \vdash_{FL_e} (\varphi \land \overline{1}) \lor (\psi \land \overline{1})$, i.e.,

$$(\varphi \vee \psi) \wedge \overline{1} \approx \overline{1} \models_{\mathbb{Q}_{\mathrm{FL}_{\mathrm{e}}}} (\varphi \wedge \overline{1}) \vee (\psi \wedge \overline{1}) \approx \overline{1}$$

which can be easily refuted

Proof by cases

For classical or intuitionistic logic we have:

$$\frac{\Gamma, \varphi \vdash_{\mathsf{L}} \chi}{\Gamma \cup \{\varphi \lor \psi\} \vdash_{\mathsf{L}} \chi}$$

But in FL_e it would entail $\varphi \lor \psi \vdash_{FL_e} (\varphi \land \overline{1}) \lor (\psi \land \overline{1})$, i.e.,

$$(\varphi \vee \psi) \wedge \overline{1} \approx \overline{1} \models_{\mathbb{Q}_{\mathrm{FL}_{\mathrm{e}}}} (\varphi \wedge \overline{1}) \vee (\psi \wedge \overline{1}) \approx \overline{1}$$

which can be easily refuted

On the other hand, we can show that:

$$\frac{\Gamma, \varphi \vdash_{\mathsf{FL_e}} \chi}{\Gamma \cup \{(\varphi \land \overline{1}) \lor (\psi \land \overline{1})\} \vdash_{\mathsf{FL_e}} \chi}$$

Generalized disjunctions

Let $\nabla(p,q,\overrightarrow{r})$ be a set of formulas. We write

$$\varphi \, \nabla \, \psi = \bigcup \{ \nabla (\varphi, \psi, \overrightarrow{\alpha}) \mid \overrightarrow{\alpha} \in \mathrm{Fm}_{\mathcal{L}}^{\leq \omega} \}.$$

Definition

 ∇ is a p-disjunction if:

$$\begin{array}{llll} \text{(PD)} & \varphi \vdash_{\mathsf{L}} \varphi \, \nabla \, \psi & \text{and} & \psi \vdash_{\mathsf{L}} \varphi \, \nabla \, \psi \\ \text{PCP} & \Gamma, \varphi \vdash_{\mathsf{L}} \chi & \text{and} & \Gamma, \psi \vdash_{\mathsf{L}} \chi & \text{implies} & \Gamma, \varphi \, \nabla \, \psi \vdash_{\mathsf{L}} \chi \end{array}$$

Definition

A logic L is a p-disjunctional if it has a p-disjunction.

We drop the prefix 'p-' if there are no parameters \overrightarrow{r} in ∇

Example

- ullet \vee is a disjunction in FL_{ew}
- ullet \vee is not a disjunction in FL_e ,

Example

- \vee is a disjunction in FL_{ew}
- \vee is not a disjunction in FL_e , but $(p \wedge \overline{1}) \vee (q \wedge \overline{1})$ is
- \bullet No single formula is a disjunction in G_{\rightarrow}

Example

- \bullet \lor is a disjunction in FL_{ew}
- ullet \vee is not a disjunction in FL_{e} , but $(p\wedge\overline{1})\vee(q\wedge\overline{1})$ is
- No single formula is a disjunction in G_{\to} but the set $\{(p \to q) \to q, (q \to p) \to p\}$ is
- No finite set of formulas is a disjunction in K

Example

- ∨ is a disjunction in FL_{ew}
- ullet \vee is not a disjunction in FL_{e} , but $(p\wedge\overline{1})\vee(q\wedge\overline{1})$ is
- \bullet No single formula is a disjunction in G_{\rightarrow}

but the set
$$\{(p \to q) \to q, (q \to p) \to p\}$$
 is

No finite set of formulas is a disjunction in K

but the set
$$\{\Box^n p \vee \Box^m q \mid n, m \geq 0\}$$
 is

No set of formulas in two variables is a disjunction in IL→

Example

- ∨ is a disjunction in FL_{ew}
- \vee is not a disjunction in FL_e , but $(p \wedge \overline{1}) \vee (q \wedge \overline{1})$ is
- \bullet No single formula is a disjunction in G_{\rightarrow}

but the set
$$\{(p \to q) \to q, (q \to p) \to p\}$$
 is

No finite set of formulas is a disjunction in K

but the set
$$\{\Box^n p \vee \Box^m q \mid n, m \geq 0\}$$
 is

• No set of formulas in two variables is a disjunction in ${\rm IL}_{\to}$ but the formula $(p \to r) \to ((q \to r) \to r)$ is a p-disjunction.

Filters in p-disjunctional logics

Theorem

Let L be a logic with a p-disjunction ∇ . Then for each \mathcal{L} -algebra A and each $X, Y \cup \{x, y\} \subseteq A$:

$$Fi(X, x) \cap Fi(X, y) = Fi(X, x \nabla^{A} y)$$

Filters in p-disjunctional logics

Theorem

Let L be a logic with a p-disjunction ∇ . Then for each \mathcal{L} -algebra A and each $X, Y \cup \{x, y\} \subseteq A$:

$$Fi(X) \cap Fi(Y) = Fi(\{a \nabla^A b \mid a \in X, b \in Y\}).$$

Filters in p-disjunctional logics

Theorem

Let L be a logic with a p-disjunction ∇ . Then for each \mathcal{L} -algebra A and each $X, Y \cup \{x, y\} \subseteq A$:

$$Fi(X) \cap Fi(Y) = Fi(\{a \nabla^A b \mid a \in X, b \in Y\}).$$

Theorem

Let L be a substructural logic. TFAE:

- L is p-disjunctional
- The lattice of all L-filters on any L-algebra is distributive
- 3 Q_I is relative-congruence-distributive

∇-prime filters

Definition

A filter F on A is ∇ -prime if for every $a, b \in A$, $a \nabla^A b \subseteq F$ implies $a \in F$ or $b \in F$.

Theorem

Let ∇ be a p-disjunction in L and A an L-algebra. Then,

 $A \in (\mathbb{Q}_L)_{RFSI}$ iff the filter $|\overline{1}\rangle$ is ∇ -prime.

Semilinear logics

Let us denote by \mathbb{Q}^ℓ_L the class of linearly ordered L-algebras.

Definition

A substructural logic L is called semilinear if

$$T \vdash_{\mathbf{L}} \varphi \quad \text{iff} \quad \{\psi \geq \overline{1} \mid \psi \in T\} \models_{\mathbf{Q}^{\ell}} \varphi \geq \overline{1}$$

Characterizations of substructural semilinear logics

Theorem

Let L be a substructural logic. TFAE:

- L is semilinear

- Each L-algebra is a subdirect product of L-chains
- **5** Any L-filter in an \mathcal{L} -algebra is an intersection of linear ones a filter F is linear if $x \to y \in F$ or $y \to x \in F$, for each x, y
- The following metarule holds:

$$\frac{T,\varphi \to \psi \vdash_{\mathsf{L}} \chi}{T \vdash_{\mathsf{L}} \chi}$$

Characterizations of substructural semilinear logics

Theorem

Let L be a substructural logic and an axiomatic system \mathcal{AX} . TFAE:

- 1 L is semilinear,
- 2 L proves $(\varphi \to \psi) \lor (\psi \to \varphi)$ and enjoys the metarule:

$$\frac{T, \varphi \vdash_{\mathsf{L}} \chi \qquad T, \psi \vdash_{\mathsf{L}} \chi}{T, \varphi \lor \psi \vdash_{\mathsf{L}} \chi}$$

- **③** L proves $(\varphi \to \psi) \lor (\psi \to \varphi)$ and any L-filter in an \mathcal{L} -algebra is an intersection of \lor -prime ones,
- **1** L proves $(\varphi \to \psi) \lor (\psi \to \varphi)$ and for every rule $T \rhd \varphi$ in \mathcal{AX} and propositional variable p not occurring in T, φ we have

$$\{\psi \lor \chi \mid \psi \in T\} \vdash_{\mathsf{L}} \varphi \lor \chi$$

Wanna know more?

Forthcoming book:

P. Cintula, C.N. Logic and Implication: An introduction to the general algebraic study of non-classical logics, Trends in Logic, Springer.

Implication gives a nice bridge between logic and algebra . . .

